cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
jurnal@if.uinsgd.ac.id
Editorial Address
Gedung Fakultas Sains dan Teknologi Lt. 4 Jurusan Teknik Informatika Jl. A.H. Nasution No. 105 Cibiru Bandung 40614 Telp. (022) 7800525 / Fax (022) 7803936 Email : jurnal@if.uinsgd.ac.id
Location
Kota bandung,
Jawa barat
INDONESIA
JOIN (Jurnal Online Informatika)
ISSN : 25281682     EISSN : 25279165     DOI : 10.15575/join
Core Subject : Science,
JOIN (Jurnal Online Informatika) is a scientific journal published by the Department of Informatics UIN Sunan Gunung Djati Bandung. This journal contains scientific papers from Academics, Researchers, and Practitioners about research on informatics. JOIN (Jurnal Online Informatika) is published twice a year in June and December. The paper is an original script and has a research base on Informatics.
Arjuna Subject : -
Articles 490 Documents
YouTube X-Rating Detection with Bahasa-Slang Title Using Query Expansion and Rule Based Approaches Dewi Wisnu Wardani; Salsabila F Shabihah
JOIN (Jurnal Online Informatika) Vol 7 No 2 (2022)
Publisher : Department of Informatics, UIN Sunan Gunung Djati Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15575/join.v7i2.799

Abstract

The detection of X-rating content on the Internet is still rarely done in Indonesia and the performance of the existing work to detect X-rating content, especially in video is still low. The largest video portal, YouTube, does not yet have automatic X-rating content detection through its content either. Some X-rating content prevention service providers in Indonesia, such as the Internet Positive and Nawala Project, detect X-rating content using the keyword detection method of a web page and then block the web page with DNS filtering. However, that method does not pay attention to using  Bahasa-Slang. This work developed Metasearch named Safedio. Safedio aims to detect X-rating content on YouTube content through video titles that contain Bahasa-Slang. Safedio utilizes Query Expansion and Rule-Based approaches. The Query Expansion is a technique to get additional rules in search. In the end, Safedio can detect X-rating content through video titles in both Bahasa and Bahasa-Slang. The average results return with precision 71%, recall 46% and accuracy 72%.
Multi Rule-based and Corpus-based for Sundanese Stemmer Ade Sutedi; Muhammad Rikza Nasrulloh; Rickard Elsen
JOIN (Jurnal Online Informatika) Vol 7 No 2 (2022)
Publisher : Department of Informatics, UIN Sunan Gunung Djati Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15575/join.v7i2.846

Abstract

The purpose of this study is to develop a stemming method by involved several methods including morphological (with affix and pro-lexeme removal), syllable (canonical) pattern, and corpus data as a comparison of the final results of stemming. The algorithm checks a number of the string first and removes affixes, then check the syllable pattern according to the stripping result, then compares to the corpus data which determines the final stemming process. In this study, the corpus data was taken from Sundanese dictionary consists of a single word used for the root word and the extracted dataset from the online Sundanese magazine. The results showed that the stripping of affix and pro-lexeme can remove the corresponding affixes and pro-lexeme then compares words that have a syllable pattern then executes the basic words quickly and the use of corpus can improve accuracy and reduce the over-stemming problems that occur in the stemming process.
Comparative Analysis of Naive Bayes, K-Nearest Neighbors (KNN), and Support Vector Machine (SVM) Algorithms for Classification of Heart Disease Patients Aina Damayunita; Rifqi Syamsul Fuadi; Christina Juliane
JOIN (Jurnal Online Informatika) Vol 7 No 2 (2022)
Publisher : Department of Informatics, UIN Sunan Gunung Djati Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15575/join.v7i2.919

Abstract

Heart disease is still the leading cause of death. In this study, we tried to test several factors that can identify patients with heart disease using 3 classification algorithms: Naive Bayes, K-Nearest Neighbors (KNN), and Support Vector Machine (SVM).  The purpose of this study is to find out which algorithm can produce the highest accuracy in classifying, analyzing, and obtaining confusion matrix values along with the accuracy of predicting heart disease based on several factors or other comorbidities that the patient has, ranging from BMI to the patient's skin cancer status.  From the results of trials conducted by the SVM algorithm, it has the highest accuracy value, which is 92% while the Naive Bayes algorithm is the lowest with an accuracy value of 88%.
A Model-Driven IS 4.0 Development Framework for Railway Supply Chain Mailasan Jayakrishnan; Abdul Karim Mohamad; Mokhtar Mohd Yusof
JOIN (Jurnal Online Informatika) Vol 7 No 2 (2022)
Publisher : Department of Informatics, UIN Sunan Gunung Djati Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15575/join.v7i2.794

Abstract

Railway Industry (RI) in Malaysia possess below-average Information System (IS) skills and seldom use the IS for decision making at their operation level while they likewise discover digital transformation adaption is crucial and hence RI in Malaysia are in the slow mass of adapter classification. Perceiving the significant task of IS to RI in the economy, the government is resolved to assist and support the improvement of IS to guarantee their sustainability and competitiveness. IS framework being significant because it set up the computerized industry, lively digital, who can structure with simple to utilize and basic dynamic interaction. The present IS model utilized in Malaysia depends on the knowledge and experience of the specialist like system developers and academicians. The maximum of these IS models to identify the visual view of performance in RI are precise and are not strategized toward railway utilize and do not give prescriptive evaluation. The issue is no transition development and the absence of industry capacity to do the transition phases. This research focuses on the technology parameters influencing the adaption of IS to assist decision-makers, administrative bodies, and IS analysis to approach the advantages of its continued and expected improvement in the RI.
Random Forest Method Approach to Customer Classification Based on Non-Performing Loan in Micro Business Muhammad Muhajir; Julia Widiastuti
JOIN (Jurnal Online Informatika) Vol 7 No 2 (2022)
Publisher : Department of Informatics, UIN Sunan Gunung Djati Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15575/join.v7i2.842

Abstract

This study aims to classify potential customers’ characteristics based on non- performing loans through the random forest method. This research uses data obtained from Syariah Mandiri Bank branch in Jambi, which includes data on micro-financing customers in years 2016–2020. The random forest method is used for analysis. The novelty of this work is that, unlike existing researches that used other soft-computing methods, we employ Random Forest method, specifically using an imbalanced class sampling technique. The obtained results show that credit risk can be estimated by taking into account factors such as age, monthly installments, margin, price of insurance, loan principal, occupation, and long installments. The research results indicate that the sensitivity, precision, and G-mean value increase compared to using the original data. Random forest with oversampling technique has the high Area Under the ROC Curve score that is equal to 66.69%.
Delineation of The Early 2024 Election Map: Sentiment Analysis Approach to Twitter Data Nur Ulum Rahmanulloh; Ibnu Santoso
JOIN (Jurnal Online Informatika) Vol 7 No 2 (2022)
Publisher : Department of Informatics, UIN Sunan Gunung Djati Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15575/join.v7i2.925

Abstract

As a democratic country, the people hold an important role in determining power in Indonesia. The closest political agenda in Indonesia is the 2024 Election. A survey has been conducted by several private survey agencies regarding the 2024 political map which has revealed the top five names, namely Prabowo Subianto, Ganjar Pranowo, Anies Baswedan, Sandiaga Uno, and Ridwan Kamil. This study aims to describe the initial map of the 2024 Election through a sentiment analysis approach to Twitter data. This study uses tweet data that mentions five political figures during 2021. In general, the demographic condition of Twitter users that pros or cons to five political figures, among them: located on the Java, in the age group 19–29 years old, and male.  The sentiment analysis method used is supervised learning with different methods for each figure. The difference in methods adjusts the best evaluation value given in each figure. The results showed that the highest positive sentimental tweets and the highest number of pro accounts was about Ganjar Pranowo. On the other hand, the highest negative sentiment and the highest number of contra accounts was about Prabowo Subianto. Many words that often appear on a figure's positive sentiment are expressions of hope, prayer, and support. On negative tweets, the word that comes up a lot relating to the work field or work region of the figures. 
Internet of Things (IoT) for Soil Moisture Detection Using Time Series Model Iman Setiawan; Junaidi Junaidi; Fadjryani Fadjryani; Fika Reski Amaliah
JOIN (Jurnal Online Informatika) Vol 7 No 2 (2022)
Publisher : Department of Informatics, UIN Sunan Gunung Djati Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15575/join.v7i2.951

Abstract

Technology in agriculture has been widely and massively applied. One of them is automation technology and the use of big data through the Internet of Things (IoT). The use of IoT allows a process to run automatically without human intervention. Extreme weather changes and narrow land use are one of the main problems in agriculture. The development of IoT devices has been widely developed regarding this subject. One of them is a soil moisture detection system. This study aims to build an IoT soil moisture detection system. The system will use a sensor as input which is then processed in a microcontroller device and the prediction results are sent to the IoT cloud platform. Prediction results are obtained using a time series model and then its performance is evaluated using RMSE. This model was chosen because the structure of the observed soil moisture data is based on time. The results of this study indicate that the soil moisture IoT system can work well. This is supported by the results of the prediction evaluation value of the RMSE = 1.175682x10-5 model which is very small.
PSO based Hyperparameter tuning of CNN Multivariate Time- Series Analysis Agung Bella Putra Utama; Aji Prasetya Wibawa; Muladi Muladi; Andrew Nafalski
JOIN (Jurnal Online Informatika) Vol 7 No 2 (2022)
Publisher : Department of Informatics, UIN Sunan Gunung Djati Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15575/join.v7i2.858

Abstract

Convolutional Neural Network (CNN) is an effective Deep Learning (DL) algorithm that solves various image identification problems. The use of CNN for time-series data analysis is emerging. CNN learns filters, representations of repeated patterns in the series, and uses them to forecast future values. The network performance may depend on hyperparameter settings. This study optimizes the CNN architecture based on hyperparameter tuning using Particle Swarm Optimization (PSO), PSO-CNN. The proposed method was evaluated using multivariate time-series data of electronic journal visitor datasets. The CNN equation in image and time-series problems is the input given to the model for processing numbers. The proposed method generated the lowest RMSE (1.386) with 178 neurons in the fully connected and 2 hidden layers. The experimental results show that the PSO-CNN generates an architecture with better performance than ordinary CNN.
Diabetes Risk Prediction Using Extreme Gradient Boosting (XGBoost) Kartina Diah Kusuma Wardhani; Memen Akbar
JOIN (Jurnal Online Informatika) Vol 7 No 2 (2022)
Publisher : Department of Informatics, UIN Sunan Gunung Djati Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15575/join.v7i2.970

Abstract

One of the uses of medical data from diabetes patients is to produce models that can be used by medical personnel to predict and identify diabetes in patients. Various techniques are used to be able to provide a diabetes model as early as possible based on the symptoms experienced by diabetic patients, including using machine learning. The machine learning technique used to predict diabetes in this study is extreme gradient boosting (XGBoost). XGBoost is an advanced implementation of gradient boosting along with multiple regularization factors to accurately predict target variables by combining simpler and weaker model set estimations. Errors made by the previous model are tried to be corrected by the next model by adding some weight to the model. The diabetes prediction model using XGBoost is shown in the form of a tree, with the accuracy of the model produced in this study of 98.71%
Development of a Digital Platform Prototype, to Facilitate Inclusive Learning for Children with Special Needs Rian Andrian Andrian; Aldi Yasin; Muhammad Raihan Ijlal Hanan; Muhamad Irwan Ramadhan; Taufik Ridwan; Rizki Hikmawan
JOIN (Jurnal Online Informatika) Vol 7 No 2 (2022)
Publisher : Department of Informatics, UIN Sunan Gunung Djati Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15575/join.v7i2.835

Abstract

Persons with disabilities have the same rights and responsibilities as citizens. Based on the 1945 Constitution Republic of Indonesia, article 31 paragraph 1 and Law Number 20 of 2003 concerning the National Education System, it can be concluded that the state provides full guarantees for Children with Special Needs to obtain quality education services. Many of the problems of inclusive learning that occurred during the Covid-19 pandemic, ranging from the unpreparedness of the school to various problems with environmental factors so that innovation was needed to overcome these problems. In this article, the author develops a prototype of a digital-based learning platform as a solution to facilitate inclusive learning for children with special needs.