cover
Contact Name
Yudhi Ardiyanto
Contact Email
yudhi.ardiyanto@umy.ac.id
Phone
-
Journal Mail Official
ramadoni@umy.ac.id
Editorial Address
-
Location
Kab. bantul,
Daerah istimewa yogyakarta
INDONESIA
Journal of Electrical Technology UMY
ISSN : 25501186     EISSN : 25806823     DOI : 10.18196/jet
The Journal of Electrical Technology UMY (JET-UMY) is a peer-reviewed journal that publishes original theoretical and applied papers on all aspects of Electrical, Electronics, and Computer Engineering.
Arjuna Subject : -
Articles 6 Documents
Search results for , issue "Vol 5, No 1 (2021): June" : 6 Documents clear
Inverator Starting Energy Saver Design For Electric Power Efficiency In Water Pumps Faisal Irsan Pasaribu; Noorly Evalina; Partaonan Harahap
Journal of Electrical Technology UMY Vol 5, No 1 (2021): June
Publisher : Universitas Muhammadiyah Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18196/jet.v5i1.12096

Abstract

The use of a Water Pump at the initial start is the use of electricity with a large capacity which sometimes faces various kinds of efficiency problems. These problems include an increase in current that occurs in the channel by improving the quality of electric power, especially in the electrical system in the area of the use of the Water Pump, which is expected to be able to improve the quality of electric power. The purpose of the research was to design an inverter starting energy saver as an effort to improve power quality for electricity savings, electric power efficiency in water pumps. This improvement is also expected to be able to reduce the cost of using electricity bills, especially in the use of water pumps. To be able to carry out the improvement of the quality of the electric power, it is necessary to calculate the active power and apparent power when the water pump is used. After performing these calculations, the installation of the inverter starting circuit saver electricity will be used. By carrying out these steps by installing a series of inverters that can improve the quality of electrical power. And by using the inverter circuit starting Energy saver, it is clear that it produces an active power efficiency value of 82% of the active power before using the 272 Watt inverter circuit and active power after using the 223.9 Watt inverter circuit, and also produces an apparent power efficiency value of 83% before using the circuit. inverter 275.18 VA and apparent power after using the inverter circuit 227.94 VA
Analysis of Induction Motor Performance Using Motor Current Signature Analysis Technique Ramadoni Syahputra; Hedi Purwanto; Rama Okta Wiyagi; Muhamad Yusvin Mustar; Indah Soesanti
Journal of Electrical Technology UMY Vol 5, No 1 (2021): June
Publisher : Universitas Muhammadiyah Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18196/jet.v5i1.11764

Abstract

This paper discusses the analysis of the performance of an induction motor using the motor current signature analysis (MCSA) technique. Induction motor is a type of electric machine that is widely used in industry. One of the industries that utilize induction motors is a steam power plant (SPP). The role of induction motors is very vital in SPP operations. Therefore, it is necessary to monitor the performance, stability, and efficiency to anticipate disturbances that can cause damage or decrease the life of the induction motor. MCSA is a reliable technique that can be used to analyze damage to an induction motor. In this technique, the induction motor current signal is detected using a current transducer. The signal is then passed on to the signal conditioning and then into the data acquisition device. The important signal data is analyzed in adequate computer equipment. The results of this analysis determine the condition of the induction motor, whether it is normal or damaged. In this research, a case study was carried out at the Rembang steam power plant, Central Java, Indonesia. The results of the analysis of several induction motors show that most of them are in normal conditions and are still feasible to operate.
Measurement, Modeling, and Optimization Speed Control of BLDC Motor Using Fuzzy-PSO Based Algorithm Izza Anshory; Dwi Hadidjaja; Indah Sulistiyowati
Journal of Electrical Technology UMY Vol 5, No 1 (2021): June
Publisher : Universitas Muhammadiyah Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18196/jet.v5i1.12113

Abstract

Measurement, modeling, and optimization are three important components that must be done to get a better system on the BLDC motor speed control system. The problem that arises in the BLDC motor speed control system is the instability indicated by a high overshoot value, a slow rise time value, and a high error steady-state. The purpose of this study is to increase the stability indicator by eliminating the high value of overshoot and error steady-state and increasing the value of the rise time. The method used in this research is to measure the input and output physical parameters, to model the BLDC motor plant mathematically and the last is to perform optimization using several control methods such as Proportional Integral Derivative (PID) control, fuzzy logic intelligent control, and Particle Swarm Optimization algorithm. (PSO). Experimental and simulation results show that the PSO algorithm has a better value in increasing stability indicators when compared to the other two control methods with a rise time of 0.00121 seconds, settling time of 0.00241 seconds, and overshoot of 0%.
Performance of Grid-Connected Rooftop Solar PV System for Households during Covid-19 Pandemic Partaonan Harahap; Faisal Irsan Pasaribu; Chandra Amirsyah Putra Siregar; Benny Oktrialdi
Journal of Electrical Technology UMY Vol 5, No 1 (2021): June
Publisher : Universitas Muhammadiyah Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18196/jet.v5i1.12089

Abstract

As we know, the need for electrical energy is increasing along with population growth and technological developments. This increase was also triggered by the growth rate of the energy demand of 6.86% per year. Most of the energy needs come from non-renewable energy, which has limitations and is not environmentally friendly. Despite being affected by Covid, this period is a momentum to start the direction of clean energy policies. The utilization of solar power can be started by utilizing a rooftop solar power system on the roof of a hotel or on the roof of other industrial buildings. As one of the research and development institutions in the housing and settlement infrastructure sector, it tries to provide alternative technology solutions through an innovative technology called PV-roof. The results of the research show that the designed roof off-grid has an average voltage and current on the first day of 13 Volts and a current of 1.8 A, and on the second day, 12.4 Volts and a current of 1.6 A, while on the third day, 12.8 Volts and current of 1.8 A. If the use of 1 battery bears a load of 450 Watts for 2.7 hours, then for users less than 5 hours, the solar charger controller capacity is 12.12 A.
AutoDock-IPS: An Automated Docking for Mobile Robot Based on Indoor Positioning System Wardhana, Dimas Aditya Putra; Happyanto, Dedid Cahya; Purwanto, Era; Akbar, Gilang Ekavigo Astafil; Putra, Karisma Trinanda
Journal of Electrical Technology UMY Vol 5, No 1 (2021): June
Publisher : Universitas Muhammadiyah Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18196/jet.v5i1.12310

Abstract

Mobile robots are proven to be reliable in supporting the human tasks by using a computerized system that minimizes human errors. However, recharging the battery in these robots is still performed manually by the user. Therefore, to extend their lifetime, an indoor automatic docking system ‘AutoDock-IPS’ is created for mobile robot to charge its battery automatically. The automatic docking system determines the location of the docks (i.e., charging stations) so that, prototype can immediately navigate to them. Experiments were carried out to validate the docking method by utilizing a compass module as a direction sensor and a rotary encoder as a displacement indicator. These sensors are combined into a robust indoor positioning system. The results show that the prototype can find the fastest route to the docking station to perform battery charging procedure.
Wireless Communication on PLC Using Access Point TP-Link TL-WN722N Rendi Priyatna; Asep Andang; Firmansyah Maulana Sugiartana Nursuwars
Journal of Electrical Technology UMY Vol 5, No 1 (2021): June
Publisher : Universitas Muhammadiyah Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18196/jet.v5i1.12260

Abstract

Technological developments are a requirement for more practical system operation. One example is in data transmission. Wireless data communication is currently very popular. In today's revolution 4.0, of course, the use of cables in data transmission media is rarely used, but not every device supports wireless data communication. One of them is the PLC (Programable Logic Controller). As for additional extensions for PLCs to communicate wirelessly, they are sold separately and, of course, the price is quite expensive. Therefore, a solution for PLCs to communicate wirelessly using the TL-WN722N access point is widely available on the market. Measurements are made with the concept of point to point by looking at the results of modbus scans using Modscan32 on a PC server. The results show that the optimal maximum distance is 80 meters, with an average data transmission time of 1 second.

Page 1 of 1 | Total Record : 6