Claim Missing Document
Check
Articles

Found 6 Documents
Search

Determination of Air Stability Parameter Threshold Value for Cumulonimbus and Thunderstorm Cloud Events at Kualanamu Meteorological Station Prima, Rajab; Arifianto, Fendy; Donni H, Yosafat; Avrionesti, Avrionesti
Journal of Technomaterial Physics Vol. 5 No. 2 (2023): Journal of Technomaterial Physics
Publisher : Talenta Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32734/jotp.v5i2.12487

Abstract

Many studies have carried out calculations related to atmospheric lability as a reference in weather forecasts, especially cumulonimbus clouds, and thunderstorms. However, many air lability index values are found to be inappropriate in each region because conditions in each region are different from each other in the region. So it is necessary to use precise index thresholds to determine weather conditions. In the study, observational data and data from Showalter Index (SI), Lifted Index (LI), K Index (KI), Severe Weather Threat Index (SWEAT), and Convective data were used. Available Potential Energy (CAPE) for ten years (2013-2022), then statistical calculations and verification for one year (2022) are carried out. The results obtained are the atmospheric stability index with the best accuracy in predicting the presence of cumulonimbus clouds and thunderstorms at the Kualanamu Meteorological Station, Deli Serdang is the best LI index to predict TS 00 and TS 12, and the best KI index to predict CB 00 and CB 12.
Perbandingan Standardized Precipitation Index dan Standardized Anomaly Index untuk Penentuan Tingkat Kekeringan di Kabupaten Sragen, Jawa Tengah Ramdhani, Muhammad Zaki; Arifianto, Fendy; Giarno, Giarno
Semesta Teknika Vol 26, No 1 (2023): MEI
Publisher : Universitas Muhammadiyah Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18196/st.v26i1.16310

Abstract

Kekeringan adalah suatu peristiwa dimana terjadinya penurunan intensitas curah hujan dan mengakibatkan krisis air untuk menunjang kebutuhan sehari hari manusia. Kasus kekeringan selalu terjadi setiap tahun di Jawa Tengah dengan berbagai macam dampak yang ditimbulkan. Tujuan dari penelitian ini adalah untuk mengetahui perbedaan pada indeks kekeringan yang digunakan, yaitu indeks kekeringan Standardized Precipitation Index (SPI) dan indeks kekeringan Standardized Anomaly Index (SAI). Penelitian ini dilakukan dengan menggunakan metode analisa secara spasial menggunakan metode perhitungan indeks kekeringan SPI dan SAI. Hasil yang diperoleh yaitu pada perhitungan menggunakan rumus SPI maupun SAI untuk menentukan tingkat kekeringan di Kabupaten Sragen periode 2011-2020 memiliki kesamaan pola sebesar 89% untuk tahun kering dan tahun basah. Selain itu, kasus kekeringan di Kabupaten Sragen untuk setiap tahunnya di dominasi oleh kategori normal. Tahun kekeringan terjadi pada tahun 2012, 2015, 2018 dengan kasus kekeringan sedang, tahun 2014 dan tahun 2019 dengan kasus kekeringan parah.  
Evaluation of the Arima-Kalman model in predicting rainfall in Medan City in 2023 using observation data from 2013 – 2022 Lumbantoruan, Alva Josia; Darmawan, Yahya; Munawar, Munawar; Nardi, Nardi; Arifianto, Fendy; Ferdiansyah, Ervan
Indonesian Physics Communication Vol 22, No 1 (2025)
Publisher : Universitas Riau

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31258/jkfi.22.1.15-22

Abstract

This paper aims to evaluate the ARIMA-Kalman model in predicting rainfall in Medan City for the year 2023. The data used are historical observation data of rainfall from 2013 to 2022 that have been tested for stationary and homogeneity, which proved not to require additional correction. The analysis results show that the ARIMA-Kalman model can capture the general pattern of rainfall well, and shows superiority in producing predictions that are closer to the actual data, with a mean absolute error (MAE) value of 54.11, which is lower than the MAE of the ARIMA model which reaches 55.66. Although the ARIMA model has a smaller root mean square error (RMSE) (66.67 compared to 69.75 for ARIMA-Kalman), the ARIMA-Kalman model shows better consistency, especially in capturing significant fluctuations, such as the peak rainfall that occurred in July 2023. Therefore, ARIMA-Kalman is proven to be more accurate and reliable for predicting rainfall in Medan city, making it a better choice to support water resources planning and management.
Empirical orthogonal functions (EOF) analysis of spatial patterns of dominant variability in the Indian Ocean Manik, Willy Bonanja; Darmawan, Yahya; Munawar, Munawar; Nardi, Nardi; Arifianto, Fendy; Ferdiansyah, Ervan
Indonesian Physics Communication Vol 22, No 1 (2025)
Publisher : Universitas Riau

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31258/jkfi.22.1.23-26

Abstract

The Indian Ocean plays a crucial role in the global climate system, particularly in influencing the seasons in Indonesia. Sea surface temperature (SST) variability in the Indian Ocean affects rainfall patterns, extreme events, such as droughts and floods, in Indonesia. This study analyzes SST variability during the dry season (June – July – August, JJA) and rainy season (December – January – February, DJF) using satellite and reanalysis data from 1981 to 2023 with the empirical orthogonal function (EOF) method. The analysis shows that the dominant SST variability pattern during JJA is related to the Indian Ocean dipole (IOD), which influences rainfall and temperature patterns in Indonesia. In DJF, SST variability is more associated with the Asian-Australian monsoon, affecting rainfall patterns and the potential for floods. This research enhances the understanding of climate dynamics in the Indian Ocean and its impact on Indonesia, and it can be used to predict extreme climate events associated with SST variability.
Climate Suitability Analysis of Robusta Coffee and Its Projections in South Sumatera Province Whibowo, Gani Hesri; Arifianto, Fendy; Ferdiansyah, Ervan
Jurnal Teknik Pertanian Lampung (Journal of Agricultural Engineering) Vol. 13 No. 2 (2024): June 2024
Publisher : The University of Lampung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23960/jtep-l.v13i2.512-524

Abstract

Climate suitability will support the growth of a plant such as Robusta coffee. This study aims to analyze the suitability of the Robusta coffee plant climate and its projection in South Sumatra. Climate suitability is assessed based on the weighting of air temperature, rainfall, number of dry months, altitude, soil texture, and slopes. This study used observation data on rainfall and air temperature at 48 rain post points in the Robusta coffee farming area. The projection uses scenarios shared socioeconomic pathways (SSP) 2-4.5 and 5-8.5 of the MIROC6 model with three projection periods of 2021-2030, 2031-2040, and 2041-2050. The results showed that baseline period 35% of the area as a very suitable class and 65% in fairly suitable class. Based on the projected results of scenario SSP2-4.5 period 1 to 3 have the same percentage of area, that is 91% in very suitable class and 9% in fairly suitable class. The projected results of the scenario SSP5-8.5 show an improvement but not better than scenario SSP2-4.5. The percentage of area very suitable class for periods 1 to 3 of 89%, 50%, and 85% respectively. Keywords: Climate suitability, Projection, Robusta coffee, SSP2-4.5, SSP5-8.5.
Peningkatan Kapasitas Perangkat Masyarakat dalam Pengolahan Data Spasial Menuju Masyarakat Tanggap Bencana Banjir di Kecamatan Pesanggrahan Jakarta Selatan Darmawan, Yahya; Munawar, Munawar; Sudarisman, Maman; Ferdiyansyah, Ervan; Arifianto, Fendy; Virgianto, Rista Hernandi; Amri, Sayful; Veanti, Desak Putu Okta
Jurnal Kreativitas Pengabdian Kepada Masyarakat (PKM) Vol 7, No 3 (2024): Volume 7 No 3 2024
Publisher : Universitas Malahayati Lampung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33024/jkpm.v7i3.13681

Abstract

ABSTRAK Pengolahan data spasial diperlukan dalam administrasi dan manajemen pemerintahan di berbagai wilayah, termasuk Kecamatan Pesanggrahan, Jakarta Selatan. Namun, kemampuan pengolahan data spasial oleh perangkat pemerintahan di Kecamatan Pesanggrahan masih terbatas. Oleh karena itu, pelatihan ini bertujuan untuk meningkatkan kapasitas masyarakat dalam mengelola data spasial, khususnya terkait respons terhadap banjir di kecamatan tersebut. Peningkatan kapasitas dilakukan melalui kegiatan bimbingan teknis dan Forum Group Discussion (FGD) yang kemudian dievaluasi. Hasil survei sebelum dan setelah pelatihan menunjukkan peningkatan pemahaman masyarakat terkait tugas dan fungsi Badan Meteorologi, Klimatologi, dan Geofisika (BMKG), termasuk informasi yang disampaikan kepada masyarakat. Setelah pelatihan, terjadi peningkatan yang signifikan dalam pemahaman masyarakat, khususnya terkait pengolahan data spasial dengan Sistem Informasi Geografis (SIG) dan potensi bencana hidrometeorologi di Kecamatan Pesanggrahan. Kata Kunci: Sistem Informasi Geografis (SIG), Data Spasial, Kecamatan Pesanggrahan, Kapasitas Masyarakat  ABSTRACT Spatial data processing is crucial for governance in various regions, including Pesanggrahan Subdistrict, South Jakarta. However, the capability in spatial data processing among local government officials in Pesanggrahan Subdistrict is still limited. Therefore, this training aims to enhance the community's capacity in managing spatial data, especially in response to floods in the subdistrict. Capacity-building is conducted through technical guidance activities and Forum Group Discussions (FGD), followed by an evaluation. Pre-and post-training surveys show an improved understanding among the community regarding the roles and functions of the Meteorology, Climatology, and Geophysics Agency (BMKG), including the information conveyed to the public. After the training, there is a significant increase in the community's understanding, particularly in spatial data processing with Geographic Information System (GIS) and the potential risks of hydrometeorological disasters in Pesanggrahan Subdistrict. Keywords: Geographic Information System (GIS), Spatial Data, Pesanggrahan Subdistrict, Community Capacity