Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : VALENSI

Synthesis of Green Diesel from Palm Oil Using Nickel-based Catalyst: A Review Aziz, Isalmi; Sugita, Purwantiningsih; Darmawan, Noviyan; Dwiatmoko, Adid Adep
Jurnal Kimia Valensi Jurnal Kimia VALENSI Volume 9, No. 1, May 2023
Publisher : Syarif Hidayatullah State Islamic University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15408/jkv.v9i1.26488

Abstract

Petroleum is the primary energy that is generally used throughout the world. Its non-renewable nature and exhaust gas emissions that can damage the environment are a concern for developing environmentally friendly renewable energy. Green diesel is an alternative energy to replace diesel fuel (diesel) from petroleum which has the potential to be developed. The raw material in palm oil has great potential for development due to its relatively high production. Green diesel synthesis can be carried out using the catalytic deoxygenation method. The type of raw material, catalyst, and process conditions influences this method. The catalyst is the most influential factor in catalytic deoxygenation. Transition metal catalysts like nickel are inexpensive and have good catalytic activity like precious metals. Catalytic activity can be increased by modifying the catalyst components and optimizing the process. Modification of the catalyst can increase the surface area, Lewis and Bronsted sites, and crystal size so that the resulting green diesel can be maximized, such as Ni-Co, Ni-Zn, and Ni-Mo bimetallic catalysts.
Natural Zeolite as Mo and MoP Catalysts Support for Catalytic Deoxygenation of Jatropha Oil Aziz, Isalmi; Farhan, Muhammad; Saridewi, Nanda; Azizah, Yulyani Nur; Muawanah, Anna; Nurbayti, Siti; Dwiatmoko, Adid Adep; Adhani, Lisa
Jurnal Kimia Valensi Jurnal Kimia VALENSI, Volume 11, No. 1, May 2025
Publisher : Department of Chemistry, Faculty of Science and Technology Syarif Hidayatullah Jakarta State Islamic University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15408/jkv.v11i1.45272

Abstract

Non-edible oil, such as Jatropha oil, is an interesting feedstock for the development of renewable diesel (green diesel). Catalytic deoxygenation using natural zeolite-supported Mo-based catalysts is a promising process for the conversion of Jatropha oil to green diesel. Mo and MoP catalysts supported on natural zeolite were synthesized by wet impregnation at a concentration of 5% (w/w). The catalysts were characterized by XRD, XRF, SAA and NH3-TPD. The catalysts were successfully synthesized with the appearance of Mo and MoP peaks on the catalyst diffractogram. XRF results also showed that Mo and P were present in the catalyst. Metal impregnation decreased the surface area and pore volume of the catalyst, but increased the average pore diameter. The NH3-TPD profile of the catalyst showed that the weak acid sites of both catalysts were larger than the strong acid sites. Based on the activity test of catalytic deoxygenation of Jatropha oil, the MoP/HZ catalyst produced a higher conversion (67%) and liquid product yield (79%) than Mo/HZ. This is associated with a larger pore diameter, so that the distribution of reactants on the catalyst surface is more optimal. However, the highest green diesel selectivity of 82% is produced by the Mo/HZ catalyst. The Mo/HZ catalyst is more oriented towards the HDO reaction, whereas the MoP/HZ catalyst is more oriented towards the DCO/DCO2 reaction.