Claim Missing Document
Check
Articles

Found 1 Documents
Search
Journal : Frontier Energy System and Power Engineering

Optimization of Double Exponential Smoothing Using Particle Swarm Optimization Algorithm in Electricity Load Vivi Aida Fitria; Arif Nur Afandi; Aripriharta Aripriharta; Danang Arbian Sulistyo
Frontier Energy System and Power Engineering Vol 5, No 2 (2023): July
Publisher : Universitas Negeri Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17977/um049v5i2p58-64

Abstract

Electricity load forecasting plays a critical role in ensuring the efficient allocation of resources, maintenance optimization, and uninterrupted power supply. The double exponential smoothing (DES) method is widely used in forecasting time series data due to its adaptability and robustness, particularly in handling linear trends without seasonal patterns. However, determining the optimal value of the alpha parameter in DES is crucial for accurate forecasting results. This study proposes the use of the Particle Swarm Optimization (PSO) algorithm to optimize the alpha parameter in DES for electricity load forecasting. PSO is a computational method that iteratively improves candidate solutions by moving particles in the search space based on simple mathematical formulas. By optimizing the alpha parameter using PSO, we aim to enhance the accuracy of short-term electricity load forecasts. Our results demonstrate that the PSO-optimized DES approach achieves a Mean Absolute Percentage Error (MAPE) of 2.89% and an accuracy of 97.11%, indicating significant improvements in forecasting performance. While the PSO algorithm provides promising results, future research may explore the application of other metaheuristic algorithms, such as the whale or orca algorithms, to further enhance the optimization of DES parameters for electricity load forecasting. This study contributes to the advancement of forecasting techniques in the power industry, facilitating more efficient power generation and distribution planning.