Claim Missing Document
Check
Articles

Found 10 Documents
Search

Analisis Sistem Persamaan Diferensial Model Predator-prey dengan Perlambatan Fitria, Vivi Aida
CAUCHY Vol 2, No 1 (2011): CAUCHY
Publisher : Mathematics Department, Maulana Malik Ibrahim State Islamic University of Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (270.219 KB) | DOI: 10.18860/ca.v2i1.1807

Abstract

Model predator-prey dengan perlambatan merupakan model interaksi dua spesies antara mangsa dan pemangsa yang berbentuk sistem persamaan diferensial tak liner. Adanya waktu perlambatan sangat mempengaruhi kestabilan titik ekuilibrium sistem persamaan diferensial model predator-prey. Penelitian ini bertujuan untuk menganalisis pengaruh waktu perlambatan terhadap kestabilan titik ekuilibrium sistem persamaan diferensial model predator-prey. Namun sebelum itu, agar dapat diketahui asal mula pembentukan model predator-prey dengan perlambatan akan dianalisis proses terbentuknya model predator-prey dengan perlambatan. Penelitian ini menggunakan penelitian kepustakaan, yaitu dengan menampilkan argumentasi penalaran keilmuan yang memaparkan hasil kajian literatur dan hasil olah pikir peneliti mengenai suatu permasalahan atau topik kajian. Hasil penelitian ini menunjukkan bahwa ada beberapa nilai perlambatan yang menyebabkan titik ekuilibrium sistem persamaan diferensial model predator-prey stabil, dan ada beberapa nilai perlambatan yang menyebabkan titik ekuilibrium sistem persamaan diferensial model predator-prey tidak stabil.
Perancangan Dan Implementasi eLearning Pada Mata Kuliah Bidang Matematika Untuk Mahasiswa Program Studi Teknik Informatika Andini, Titania Dwi; Afiyah, Siti Nurul; Fitria, Vivi Aida
INTEGER: Journal of Information Technology Vol 3, No 1 (2018)
Publisher : Fakultas Teknologi Informasi Institut Teknologi Adhi Tama Surabaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (843.816 KB) | DOI: 10.31284/j.integer.2018.v3i1.139

Abstract

Abstrak. Pada program studi Teknik Informatika, terdapat mata kuliah bidang matematika yang wajib ditempuh oleh mahasiswa yaitu mata kuliah matematika, aljabar linear, matematika diskret serta metode numerik.Mata kuliah tersebut merupakan mata kuliah dasar untuk program studi teknik informatika.Mata kuliah tersebut merupakan momok bagi sebagian mahasiswa teknik informatika, dikarenakan mata kuliah tersebut membutuhkan kemampuan pemahaman analisis matematika. Namun, ketika pembelajarannya didukung dengan teknologi maka akan sangat mudah dan membantu para dosen pengampu dalam menyampaikan materi – materi mata kuliah terebut kepada mahasiswa. Hal ini juga dapat meningkatkan motivasi belajar dan kompetensi para mahasiswa teknik informnatika untuk selalu ingin menggali dan mencari tahu akan hal – hal yang belum diketahui atau ada yang belum mereka pahami.Salah satu teknologi yang sedang berkembang untuk pembelajaran saat ini adalah pembelajaran berbasis website atau lebih dikenal dengan eLearning.ELearning ini memberikan beberapa keuntungan kepada para penggunanya terutama para mahasiswa prodi teknik informatika, mahasiswa dapat dengan mudah mengakses media pembelajaran ini, dapat mentransformasi ilmu pengetahuan mengenai metode numerik tanpa tatap muka sehingga dapat memotivasi belajar mahasiswa dan yang pasti juga bisa meningkatkan kompetensi mahasiswa.
PARAMETER OPTIMIZATION OF SINGLE EXPONENTIAL SMOOTHING USING GOLDEN SECTION METHOD FOR GROCERIES FORECASTING fitria, vivi aida
ZERO: Jurnal Sains, Matematika dan Terapan Vol 4, No 2 (2018): July - Desember
Publisher : UIN Sumatera Utara Medan

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (564.933 KB) | DOI: 10.30829/zero.v4i2.3438

Abstract

Department of Agriculture and Food Security Malang City, especially in the Field of Food Supply Availability and Distribution requires a reference forecasting of food prices in Malang. The method used in the forecasting calculation is Single Exponential Smoothing. In the process of calculating the Single Exponential Smoothing method, it takes alpha parameters between 0 and 1. The problem is when to estimate the alpha value between 0 to 1 with trial error with the aim of producing minimal forecasting results. Therefore, this study aims to determine the optimal alpha value. The method used in this research is the Golden Section Method. The principle of Golden Section method in this study is to reduce the boundary area so as to produce a minimum MAPE (Mean Absolute Percentage Error) value The data used in this study is the price of 9 commodities of Groceries in Malang since January 1, 2016 until December 31, 2017. The results showed that the Golden Section method found that the optimal alpha value was 0.999 with MAPE average of 9 commodities is 0.79%. So with this golden section method researchers do not need a long time to determine alpha by trial error
Analisis Dinamik Skema Euler Untuk Model Predator-Prey Dengan Efek Allee Kuadratik Fitria, Vivi Aida; Afiyah, S. Nurul
JMPM: Jurnal Matematika dan Pendidikan Matematika Vol 2, No 1: Maret - Agustus 2017
Publisher : Universitas Pesantren Tinggi Darul 'Ulum Jombang

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1740.006 KB) | DOI: 10.26594/jmpm.v2i1.774

Abstract

Pada penelitian ini dilakukan pendekatan numerik menggunakan skema Euler pada model predator-prey dengan efek alelopati. Perilaku dinamik dari model diskrit yang diperoleh kemudian dianalisis, yaitu eksistensi dan kestabilan titik kesetimbangan model tersebut. Analisis kestabilan titik kesetimbangan menunjukkan bahwa titik kepunahan predator dan predator-prey bersifat tidak stabil tetapi titik kepunahan prey dan titik keberhasilan hidup predator-prey bersifat stabil dengan syarat tertentu. Dari simulasi numerik menunjukkan bahwa hasil yang diperoleh sesuai dengan hasil analisis.
NFT Investments Analysis: A Strategic Approach with Ranking Insights and Sales Forecasting System for Informed Decision-Making Fitria, Vivi Aida; Afandi, Arif Nur; Aripriharta, Aripriharta; Widayanti, Lilis; Sulistyo, Danang Arbian
The Asian Journal of Technology Management (AJTM) Vol. 16 No. 2 (2023)
Publisher : Unit Research and Knowledge, School of Business and Management, Institut Teknologi Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12695/ajtm.2023.16.2.2

Abstract

Abstract. The non-fungible token (NFT) is a unique token used to represent digital assets such as art, music, videos, and other collections. NFT has gained significant attention from the business and industry sectors in recent years. This study reports an increase in the number of active NFT users from 77,000 to 222,000 in early 2021. Investment in NFT has advantages and disadvantages, and one of the challenges faced by investors is that they may not have enough knowledge about investing risks and may find it difficult to recognize and evaluate potential dangers. To address this problem, this study proposes a system that provides information on NFT collection sales rankings and volume sales forecasts. The simple additive weighting (SAW) method is used to determine the NFT collection rankings, and exponential smoothing is used to forecast sales volume. The Particle Swarm Optimization (PSO) method is applied to optimize the parameter alpha of the Exponential Smoothing method. With an accuracy rate of 80.38%, the combination of using the Single Exponential Smoothing method with PSO optimization can provide good predictions for future NFT sales. The proposed system aims to provide investors with accurate information to make informed decisions when investing in NFT. Keywords:  Forecasting system, pso, ranking system, saw, single exponential smoothing
Analisis Dinamik Skema Euler Untuk Model Predator-Prey Dengan Efek Allee Kuadratik Fitria, Vivi Aida; Afiyah, S. Nurul
JMPM: Jurnal Matematika dan Pendidikan Matematika Vol 2 No 1: Maret
Publisher : Prodi Pendidikan Matematika Universitas Pesantren Tinggi Darul Ulum Jombang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26594/jmpm.v2i1.774

Abstract

Pada penelitian ini dilakukan pendekatan numerik menggunakan skema Euler pada model predator-prey dengan efek alelopati. Perilaku dinamik dari model diskrit yang diperoleh kemudian dianalisis, yaitu eksistensi dan kestabilan titik kesetimbangan model tersebut. Analisis kestabilan titik kesetimbangan menunjukkan bahwa titik kepunahan predator dan predator-prey bersifat tidak stabil tetapi titik kepunahan prey dan titik keberhasilan hidup predator-prey bersifat stabil dengan syarat tertentu. Dari simulasi numerik menunjukkan bahwa hasil yang diperoleh sesuai dengan hasil analisis.
Klasifikasi Penyakit Ginjal Kronis Menggunakan K-Nearest Neighbors dengan Feature selection Pearson Correlation Coefficient Khadiki, Mohammad Rizan; Fitria, Vivi Aida
Journal of Information System Research (JOSH) Vol 6 No 3 (2025): April 2025
Publisher : Forum Kerjasama Pendidikan Tinggi (FKPT)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47065/josh.v6i3.7131

Abstract

Chronic kidney disease (CKD) is a global health issue that impacts quality of life and mortality rates. CKD often shows no symptoms in its early stages, earning it the nickname "silent disease," which complicates early detection efforts. This study aims to develop a classification model for CKD using the K-Nearest Neighbors (KNN) algorithm combined with the Pearson Correlation Coefficient feature selection method to enhance model performance. Feature selection is employed to reduce data dimensionality and prevent overfitting. The Kaggle "Chronic Kidney Disease" dataset is used in this study. Evaluation results show that the model with feature selection achieved an accuracy of 93.37%, precision of 91.9%, recall of 93.37%, and F1-score of 91.48%, while the model without feature selection achieved an accuracy of 91.27%, precision of 87.24%, recall of 91.27%, and F1-score of 88.99%. The contribution of this research is to improve the classification performance of chronic kidney disease by utilizing feature selection methods to achieve a better balance between precision and recall while reducing classification errors.
Utilizing AI to Optimize Product Sales at UD Bima Baru Widayanti, Lilis; Vivi Aida Fitria; Adriani Kala’lembang; Widya Adhariyanty Rahayu; Suastika Yulia Riska
Jurnal Pengabdian Masyarakat Vol. 6 No. 1 (2025): Jurnal Pengabdian Masyarakat
Publisher : Institut Teknologi dan Bisnis Asia Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32815/jpm.v6i1.2454

Abstract

Purpose: The study aims to evaluate the effectiveness of activities in reaching participants, achieving training goals, improving proficiency, and enhancing sales through AI technologies. Method: This study teaches and evaluates the use of AI in sales optimization through lectures, demonstrations, tasks, and question-and-answer meetings. How well the activity worked is judged by how well the players met the goals and understood the material. Practical Application: The participants from UD. Bima Baru showed high levels of enthusiasm and engagement during each session of the activity. This indicates the possibility for enhancing their skills, operational efficiency, and revenue, while also fostering collaboration and fostering creativity in the future. Conclusion: Artificial intelligence (AI) has considerable potential to augment sales for MSMEs, like UD Bima Baru, through data-driven decision-making. Effective AI adoption requires practical experience, underscoring the significance of collaboration between academia and MSMEs in providing education, training, and mentorship. This collaboration fosters technological adoption and enhances local economic growth by generating practical, concrete ideas. Future training must include sequential courses for MSMEs to leverage AI.
Boundless Creativity: Vlogging with a Smartphone in the Digital Era Kala'lembang, Adriani; Riska, Suastika Yulia; Widayanti, Lilis; Rahayu, Widya Adhariyanty; Fitria, Vivi Aida
Jurnal Pengabdian Masyarakat Vol. 6 No. 1 (2025): Jurnal Pengabdian Masyarakat
Publisher : Institut Teknologi dan Bisnis Asia Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32815/jpm.v6i1.2475

Abstract

Purpose: This community service aims to enhance the technical skills of students at SMK Negeri 12 Malang in digital vlog creation. Method: The program involves training sessions using lectures and hands-on practice to improve lighting techniques. Practical Application: This initiative has a significant impact on vlog production by following essential steps, including framing techniques, lighting, and video editing. Conclusion: This program enhances students' creativity and skills in vlog creation.
Enhancing Accuracy in Stock Price Prediction: The Power of Optimization Algorithms Fitria, Vivi Aida; Widayanti, Lilis
MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer Vol. 23 No. 2 (2024)
Publisher : Universitas Bumigora

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30812/matrik.v23i2.3785

Abstract

The purpose of this research was to improve the accuracy of stock price prediction by implementing optimization algorithms on forecasting methods, in this case, the exponential smoothing method. This research implemented the Particle Swarm Optimization (PSO) and Bat Algorithm metaheuristic optimization algorithms to determine the single-exponential smoothing method’s smoothing parameters. Before implementing the optimization algorithm, the way to determine the smoothing parameters was by trial-and-error method, which is considered less effective. Therefore, the novelty of this research is tuning the parameters of the exponential smoothing method using a comparison of two metaheuristic algorithms, namely the particle swarm optimization algorithm compared to the bat algorithm. The Single Exponential Smoothing method with PSO and Bat algorithms was proven to improve accuracy. The alpha parameter found by the PSO algorithm is 0.9346, and the bat algorithm is 0.936465. With a MAPE of 1.0311%, it was better than the MAPE generated in the Single Exponential smoothing method by trial and error of 1.0316%. This research contributes to providing insight that in a highly sensitive stock prediction situation, metaheuristic algorithms can be used to create more accurate and efficient prediction results.