Claim Missing Document
Check
Articles

Found 13 Documents
Search

Sistem Pengukur Kondisi Fisik Atlet Tarung Derajat Berbasis Web Sari, Aulia Rahmita; Azahari, Azahari; Harianto, Kusno
RIGGS: Journal of Artificial Intelligence and Digital Business Vol. 4 No. 4 (2026): November - January
Publisher : Prodi Bisnis Digital Universitas Pahlawan Tuanku Tambusai

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31004/riggs.v4i4.3447

Abstract

Dalam dunia olahraga prestasi, kemampuan fisik merupakan faktor utama yang menentukan keberhasilan seorang atlet dalam mencapai performa optimal. Salah satu aspek penting dalam pembinaan atlet adalah pemantauan dan pengukuran kondisi fisik secara berkala untuk mengetahui tingkat kebugaran dan kesiapan atlet dalam menghadapi pertandingan. Bertujuan mengimplementasikan aplikasi pengukur kondisi fisik atlet Tarung Derajat berbasis web agar membantu pelatih dan atlet mengelola data hasil tes fisik secara lengkap. Aplikasi ini dikembangkan menggunakan metode Waterfall pengembangan perangkat lunak yang menggunakan pendekatan linear dan berurutan, cocok untuk proyek dengan kebutuhan yang stabil sejak awal dan juga cocok untuk proyek yang mengedepankan kualitas. pengujian black box mungkinkah perekayasan perangkat lunak mendapatkan serangkai kondisi input yang sepenuhnya menggunakan semua persayaratan fungsional untuk suatu program menunjukkan aplikasi mampu menampilkan hasil pengukuran kondisi fisik atlet secara akurat, menyediakan laporan perkembangan performa secara otomatis, serta memudahkan pelatih dalam melakukan evaluasi. Dengan adanya aplikasi ini, proses penilaian kondisi fisik atlet menjadi lebih terstruktur, cepat, dan terdokumentasi dengan baik, Pelatih memperoleh informasi dan melakukan pengukuran kondisi fisik setiap Atlet tarung drajat tanpa perlu melakukan perhitungan secara manual satu persatu. Atlet tarung derajat sendiri dapat mengetahui atau memantau secara realtime hasil perhitungan kondisi fisik terakhir mereka pada Aplikasi Pengukur Kondisi Fisik Atlet Tarung Derajat.
Rancang Bangun Sistem Layanan Pengaduan Pusat Komputer Berbasis Website Pratama, Jerio Putra; Adytia, Pitrasacha; Harianto, Kusno
Journal of Informatics, Electrical and Electronics Engineering Vol. 5 No. 2 (2025): December 2025
Publisher : Forum Kerjasama Pendidikan Tinggi (FKPT)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47065/jieee.v5i2.2823

Abstract

This study aims to design and develop a web-based Puskom Complaint Service System that facilitates integrated and transparent complaint reporting, handling, and monitoring processes. The system development method used is the Software Development Life Cycle (SDLC) Waterfall model, which consists of the stages of requirements analysis, system design, implementation, testing, and maintenance. The system is developed using the PHP programming language with the Laravel framework, MySQL as the database, and Vue.js as the front-end technology to provide a modern user interface. The result of this study is a web-based system that has been successfully implemented with key features, including registration and login for students and staff, an online complaint submission form, online complaint status updates (open, progress, resolved, rejected), and a monitoring dashboard. Functional testing using the Black Box Testing method shows that 10 test scenarios were successfully executed with a 100% success rate, indicating that the system functions as designed. It is expected that this web-based Puskom complaint service system can provide a more structured, efficient, and transparent solution, thereby improving the quality of information technology services at STMIK Widya Cipta Dharma.
Student Class Grouping in Junior High Schools Based on Academic Performance Using the Fuzzy C-Means Method Bustomi, Tommy; Hasiholan, Jundro Daud; Harianto, Kusno
Building of Informatics, Technology and Science (BITS) Vol 7 No 3 (2025): December 2025
Publisher : Forum Kerjasama Pendidikan Tinggi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47065/bits.v7i3.8585

Abstract

Abstrak−Differences in academic abilities among junior high school students often pose a challenge for schools in conducting class groupings objectively and efficiently. Many educational institutions, including SMP Negeri Y, still rely on manual grouping methods that are subjective and do not accurately reflect the actual conditions of students. Inaccurate grouping may lead to imbalanced learning processes, where students with high and low academic abilities are placed in the same group without considering their performance variations. Therefore, a data-driven approach is needed to represent student characteristics comprehensively and flexibly. This study aims to apply the Fuzzy C-Means (FCM) method to cluster students of SMP Negeri Y based on four main attributes: Academic Average, Attitude Score, Activeness Score, and Attendance. The FCM method was chosen for its ability to handle data uncertainty and assign multiple membership degrees to each student across different clusters. Prior to clustering, the data underwent a preprocessing stage involving data cleaning, normalization using StandardScaler, and scale adjustment across attributes to improve the accuracy of Euclidean distance calculations. The analysis results revealed the formation of two main clusters representing student academic performance levels. Cluster 0 has an average academic score of 78.37 with moderate attitude and activeness levels, while Cluster 1 shows a higher academic average of 82.18 accompanied by better attitude, activeness, and attendance scores. Based on the highest membership degree, 38 students were assigned to Cluster 0 and 26 students to Cluster 1. Model evaluation using Fuzzy Partition Coefficient (FPC), Modified Partition Coefficient (MPC), and Silhouette Score indicated the optimal configuration at a fuzziness level of m = 2, yielding FPC = 0.680, MPC = 0.359, and Silhouette Score = 0.334. These findings demonstrate that FCM is effective in representing variations in student abilities more realistically, while also providing an objective foundation for schools to design adaptive learning strategies and implement data-driven academic policies.