Claim Missing Document
Check
Articles

Found 3 Documents
Search

From Clicks to Conversions: Mastering Data-Driven Marketing for Maximum ROI Aditi, Bunga; Wardana, Miko Andi; Yuliani, Erma
Jurnal Informatika Ekonomi Bisnis Vol. 7, No. 2 (June 2025)
Publisher : SAFE-Network

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.37034/infeb.v7i2.1135

Abstract

This study investigates the impact of data-driven decision making and marketing automation using artificial intelligence on return on investment, with customer engagement examined as a mediating variable. Employing a quantitative research design, data were collected through an online survey targeting professionals in digital marketing and e-commerce sectors. The analysis was conducted using Partial Least Squares Structural Equation Modeling, which validated both the measurement and structural models. The results reveal that data-driven decision making and marketing automation using artificial intelligence significantly influence customer engagement, which in turn has a strong and positive effect on return on investment. Furthermore, customer engagement mediates the relationship between both predictor variables and return on investment, suggesting that the financial benefits of digital strategies are maximized when they successfully foster active and meaningful customer interactions. These findings highlight the importance of integrating analytical tools and technological innovations with customer-centric engagement strategies to achieve sustainable marketing performance in digital environments.
From Clicks to Conversions: Mastering Data-Driven Marketing for Maximum ROI Aditi, Bunga; Wardana, Miko Andi; Yuliani, Erma
Jurnal Informatika Ekonomi Bisnis Vol. 7, No. 2 (June 2025)
Publisher : SAFE-Network

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.37034/infeb.v7i2.1135

Abstract

This study investigates the impact of data-driven decision making and marketing automation using artificial intelligence on return on investment, with customer engagement examined as a mediating variable. Employing a quantitative research design, data were collected through an online survey targeting professionals in digital marketing and e-commerce sectors. The analysis was conducted using Partial Least Squares Structural Equation Modeling, which validated both the measurement and structural models. The results reveal that data-driven decision making and marketing automation using artificial intelligence significantly influence customer engagement, which in turn has a strong and positive effect on return on investment. Furthermore, customer engagement mediates the relationship between both predictor variables and return on investment, suggesting that the financial benefits of digital strategies are maximized when they successfully foster active and meaningful customer interactions. These findings highlight the importance of integrating analytical tools and technological innovations with customer-centric engagement strategies to achieve sustainable marketing performance in digital environments.
Identifikasi Tumbuhan Berbiji (Spermatophyta) di Kawasan Ijen Geopark Sebagai Sumber Belajar Biologi Yuliani, Erma; Supeno, Supeno; Ridlo, Zainur Rasyid
BRILIANT: Jurnal Riset dan Konseptual Vol 8 No 4 (2023): Volume 8 Nomor 4, November 2023
Publisher : Universitas Nahdlatul Ulama Blitar

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28926/briliant.v8i4.1252

Abstract

Biologi merupakan ilmu luas karena mempelajari semua makhluk hidup yang ada diseluruh permukaan bumi. Pada pembelajaran Biologi SMP dan SMA terdapat materi klasifikasi makhluk hidup. Klasifikasi makhluk hidup yaitu proses pengelompokan makhluk hidup berdasarkan ciri yang dimiliki. Untuk meningkatkan kualitas pembelajaran dibutuhkan sumber belajar. Peserta didik dapat menggunakan laboratorium alam yaitu lingkungan sekitar, sehingga peserta didik akan mendapatkan fenomena yang dapat dimanfaatkan sebagai tempat atau sumber belajar yang efektif. Metode untuk mengidentifikasi sampel tumbuhan berbiji (Spermatophyta) yaitu metode plot. Hasil identifikasi digunakan sebagai sumber belajar. Upaya untuk meningkatkan kualitas pembelajaran menggunakan lingkungan alam yaitu sumber belajar cetak ensiklopedia, karena ensiklopedia memuat infomasi yang ringkas, menarik serta terdapat berbagai representasi gambar. Produk sumber belajar ensiklopedia divalidasi oleh 3 validator ahli biologi. Hasil validasi ensiklopedia tumbuhan berbiji (Spermatophyta) diperoleh skala 88,3% dimana nilai tersebut menunjukkan bahwa ensiklopedia layak digunakan sebagai sumber belajar Biologi.