Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : Indonesian Journal of Electrical Engineering and Computer Science

Development and modification Sobel edge detection in tuberculosis X-ray images Devita, Retno; Fitri, Iskandar; Yuhandri, Yuhandri; Yani, Finny Fitry
Indonesian Journal of Electrical Engineering and Computer Science Vol 35, No 2: August 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v35.i2.pp1191-1200

Abstract

Tuberculosis (TB), a major global health threat caused by mycobacterium tuberculosis, claims lives across all age groups, underscoring the urgent need for accurate diagnostic methods. Traditional TB diagnosis using X-ray images faces challenges in detection accuracy, highlighting a critical problem in medical imaging. Addressing this, our study investigates the use of image processing techniques-specifically, a dataset of 112 TB X-ray images-employing pre-processing, segmentation, edge detection, and feature extraction methods. Central to our method is the adoption of a modified Sobel edge detection technique, named modification and extended magnitude gradient (MEMG), designed to enhance TB identification from X-ray images. The effectiveness of MEMG is rigorously evaluated against the gray-level co-occurrence matrix (GLCM) parameters, contrast, and correlation, where it demonstrably surpasses the standard Sobel detection, amplifying the contrast value by over 50% and achieving a correlation value nearing 1. Consequently, the MEMG method significantly improves the clarity and detail of TB-related anomalies in X-ray images, facilitating more precise TB detection. This study concludes that leveraging the MEMG technique in TB diagnosis presents a substantial advancement over conventional methods, promising a more reliable tool for combating this global health menace.
Improved feature extraction method and K-means clustering for soil fertility identification based on soil image Ramadhanu, Agung; Hendri, Halifia; Enggari, Sofika; Andini, Silfia; Devita, Retno; Rianti, Eva
Indonesian Journal of Electrical Engineering and Computer Science Vol 38, No 3: June 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v38.i3.pp2001-2011

Abstract

This research is conducting analysis of digital land images using digital image processing techniques. The main purpose of the research is to classify soil fertility based on two-dimensional RGB colored digital soil images. The research is done by extracting features and shapes from the soil image. The research uses methods of segmentation, extraction, and identification against digital soil images. This research is carried out in three stages. The first phase of this research is image pre-processing which begins with the conversion of RGB color image to Grayscale then color conversion to binary which subsequently performs noise reduction with the method Three-layer median filter. The second stage is a process that is divided into the first two stages, namely the process of segmentation by grouping RGB color images into L*a*b which is continued by clustering using the K-means clustering method. The second is the extraction of characteristics of the soil image which is characteristic of shape and texture. The final stage is the identification of soil images that are clustered into two types: fertile soils and unfertile soil. The study achieved an accuracy of 85% which could accurately identify 20 images while inaccurately classifying 5 images out of a total of 25 input images.