Claim Missing Document
Check
Articles

Found 14 Documents
Search

IDENTIFIKASI KEBUDAYAAN SUKU KAILI YANG MEMBENTUK CITRA KOTA PALU DI KECAMATAN TAWAELI Deltri Dikwardi Eisenring; Takwim, Supriadi; Ryan, Muhammad; Fransisko, Aang
Plano Madani : Jurnal Perencanaan Wilayah dan Kota Vol 14 No 2 (2025)
Publisher : Jurusan Teknik Perencanaan Wilayah dan Kota, Fakultas Sains dan Teknologi, Universitas Islam Negeri Alauddin Makassar

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

The Kaili tribe plays a significant role in shaping the image of Palu City through various cultural aspects such as art, customs, language, and traditions. The culture of the Kaili people is reflected in the city’s architecture, spatial arrangement, and daily activities of its residents. Based on these conditions, the researcher is interested in identifying the cultural elements of the Kaili tribe within the spatial structure of Palu City by observing their activity patterns and gathering places that contribute to the formation of the city’s image. This study aims to identify the role of Kaili culture in shaping the image of Palu City, focusing on the Tawaeli District, specifically the Panau and Baiya sub-districts. A qualitative descriptive method was employed, utilizing an ethnographic approach to identify cultural symbols and their relationship to the image of Palu City, which were then mapped through the behavioral mapping method. The results of the study show that the path elements, such as routes once used for traditional rituals, though many of these rituals are no longer practiced, still function as connections between key points in the community’s social life. The edge elements, such as the Tawaeli River and the coastal boundary of Palu Bay, serve as physical separators regulating activities between the land and sea areas. The district elements indicate a spatial division based on social status and dominant economic activities within each area. The node elements, such as traditional markets and monuments, serve as centers of economic and social activity, with monuments representing the identity of the Kaili people. Furthermore, landmark elements, such as the Tawaeli King’s Cemetery Park and traditional houses, play a vital role as sources of pride and the preservation of cultural values.
Predictive Maintenance Automatic Weather Station Sensor Error Detection using Long Short-Term Memory Santoso, Bayu; Ryan, Muhammad; Wicaksana, Haryas Subyantara; Ananda, Naufal; Budiawan, Irvan; Mukhlish, Faqihza; Kurniadi, Deddy
ULTIMA Computing Vol 15 No 2 (2023): Ultima Computing : Jurnal Sistem Komputer
Publisher : Faculty of Engineering and Informatics, Universitas Multimedia Nusantara

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31937/sk.v15i2.3403

Abstract

Weather information plays a crucial role in various sectors due to Indonesia's wide range of weather and extreme climate phenomena. Automatic Weather Stations (AWS) are automated equipment designed to measure and collect meteorological parameters such as atmospheric pressure, rainfall, relative humidity, atmospheric temperature, wind speed, and wind direction. Occasionally, AWS sensors may produce erroneous values without the technicians' awareness. This study aims to develop sensors error detection system for predictive maintenance on AWS using the Long Short-Term Memory (LSTM) model. The AWS dataset from Jatiwangi, West Java, covering the period from 2017 to 2021, will be utilized in the study. The study revolves around developing and testing four distinct LSTM models dedicated to each sensor: RR, TT, RH, and PP. The research methodology involves a phased approach, encompassing model training on 70% of the available dataset, subsequent validation using 25% of the data, and finally, testing on 5% of the dataset alongside the calibration dataset. Research outcomes demonstrate notably high accuracy, exceeding 90% for the RR, TT, and PP models, while the RH model achieves above 85%. Moreover, the research highlights that Probability of Detection (POD) values generally trend high, surpassing 0.8, with a low False Alarm Rate (FAR), typically below 0.1, except for the RH model. Sensor condition requirements will adhere to the rules set by World Meteorological Organization (WMO) and adhere to the permitted tolerance limits for each weather parameter.
Improving Accuracy of Daily Weather Forecast Model at Soekarno-Hatta Airport Using BILSTM with SMOTE and ADASYN Danitasari, Finkan; Ryan, Muhammad; Handoko, Djati; Pramuwardani, Ida
Jurnal Penelitian Pendidikan IPA Vol 10 No 1 (2024): January
Publisher : Postgraduate, University of Mataram

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29303/jppipa.v10i1.5906

Abstract

Bidirectional LSTM (BiLSTM) is an extension of LSTM which can improve model efficiency and accuracy in classification scenarios based on time series data or longer time series data repeatedly. This research uses the BiLSTM algorithm to build a daily weather forecast model at Soekarno-Hatta Airport. The model built will assist forecasters in making weather forecasts on a local scale. This research is expected to be implemented and able to increase the verification value of Soekarno-Hatta Airport weather forecasts to support flight safety in Indonesia. The dataset used is hourly surface air weather parameter data (synoptic data) of Soekarno-Hatta Meteorological Station for the period January 2018 - December 2022. There is an imbalance in the data set, so the SMOTE and ADASYN techniques are used to handle the problem. The output of this research is weather conditions categorised into sunny, sunny cloudy, cloudy, light rain, moderate rain, heavy rain, and thunder rain. The results obtained will go through model verification and evaluation by finding the accuracy value by comparing the weather forecast model output with actual weather data using a multi-category contingency table. The BiLSTM - ADASYN model obtained the highest average accuracy value compared to other models, which was 83.2%.
Implementasi Security Onion Untuk Monitoring Serangan Port Scanning Ryan, Muhammad; Amri, Amri; Davi, Muhammad
eProceeding of TIK Vol 5, No 2 (2025): eProTIK: November, 2025
Publisher : Politeknik Negeri Lhokseumawe

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Keamanan jaringan merupakan aspek penting yang harus dijaga untuk memastikan ketersediaan layanan sekaligus melindungi data dari ancaman siber. Salah satu teknik serangan yang sering digunakan adalah port scanning, yaitu upaya penyerang untuk menemukan port terbuka yang dapat dimanfaatkan. Selain itu, serangan Distributed Denial of Service (DDoS) juga kerap digunakan untuk melemahkan atau melumpuhkan layanan dengan membanjiri jaringan menggunakan lalu lintas berlebih. Penelitian ini bertujuan menilai efektivitas Security Onion, sebuah sistem deteksi intrusi berbasis open source, dalam mendeteksi serangan terhadap MikroTik CHR yang terhubung langsung ke jaringan publik. Pengujian dilakukan dengan meluncurkan serangan dari jaringan luar menggunakan perangkat Kali Linux yang menargetkan alamat IP publik MikroTik. Topologi penelitian terdiri atas MikroTik CHR sebagai gateway, Security Onion sebagai sistem pemantauan melalui port mirroring, serta perangkat penyerang dari internet. Hasil pengujian menunjukkan bahwa Security Onion berhasil mendeteksi aktivitas port scanning dan DDoS secara konsisten, dengan tingkat deteksi mencapai 100% berdasarkan perhitungan Attack Detection Rate (ADR). Temuan ini membuktikan bahwa Security Onion mampu memberikan peringatan dini terhadap serangan dari jaringan luar serta berperan penting dalam meningkatkan keamanan jaringan berbasis MikroTik.