Claim Missing Document
Check
Articles

Found 25 Documents
Search

PENDEKATAN AGILE SCRUM UNTUK MENINGKATKAN EFISIENSI PADA APLIKASI SISTEM PENJUALAN PRODUK KEDELAI Natsir, Fauzan; Sulistyohati, Aprilia; Sihombing, Redo Abeputra
Jurnal Aplikasi Teknologi Informasi dan Manajemen (JATIM) Vol 5 No 1 (2024): Jurnal Aplikasi Teknologi Informasi dan Manajemen (JATIM) April 2024
Publisher : Fakultas Teknik Universitas Islam Madura

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31102/jatim.v5i1.3282

Abstract

Penerapan metode Agile Scrum dalam pengembangan perangkat lunak telah menjadi pendekatan yang dominan dalam meningkatkan efisiensi operasional, terutama di sektor usaha kecil dan menengah (UKM). Agile Scrum memungkinkan sistem yang lebih fleksibel dan adaptif terhadap kebutuhan pengguna, sementara sistem informasi berbasis web dapat meningkatkan transparansi dan efektivitas operasional. Penelitian ini bertujuan untuk mengembangkan aplikasi sistem penjualan produk kedelai dengan metode Agile Scrum guna mengoptimalkan proses pemesanan, manajemen stok, dan laporan penjualan. Pengembangan dilakukan melalui iterasi sprint, yang mencakup perencanaan, pengembangan, pengujian, dan evaluasi untuk memastikan keakuratan fungsional sistem. Aplikasi yang dikembangkan dirancang dengan fitur utama meliputi manajemen stok otomatis, pencatatan transaksi real-time, pembuatan laporan penjualan terstruktur, serta analisis data penjualan untuk mendukung pengambilan keputusan bisnis yang lebih efektif. Hasil penelitian menunjukkan bahwa penerapan Agile Scrum dalam pengembangan aplikasi ini berhasil meningkatkan efisiensi operasional, mempercepat proses pemesanan, serta meningkatkan jangkauan pemasaran. Dengan demikian, implementasi Agile Scrum terbukti menjadi strategi yang efektif dan responsif dalam pengembangan sistem penjualan produk kedelai, memberikan fleksibilitas dan adaptabilitas terhadap kebutuhan bisnis yang dinamis.
Pelatihan Pembuatan Soal Interaktif Menggunakan Quiz Creator bagi Guru- Guru di SD Insan Cendekia Natsir, Fauzan; Sihombing, Redo Abeputra; Marsiani, Ega Shela; Izzatillah, Millati
Kapas: Kumpulan Artikel Pengabdian Masyarakat Vol 3, No 3 (2025)
Publisher : Universitas Indraprasta PGRI

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30998/ks.v3i3.3922

Abstract

Peningkatan kualitas pembelajaran di sekolah dasar dapat didukung dengan pemanfaatan teknologi dalam proses evaluasi, salah satunya melalui penggunaan soal interaktif berbasis digital. Namun, masih banyak guru yang menghadapi kendala dalam membuat soal interaktif yang menarik dan efektif karena keterbatasan keterampilan dalam menggunakan perangkat lunak edukasi. Oleh karena itu, program pengabdian kepada masyarakat ini bertujuan untuk melatih guru-guru di SD Insan Cendekia dalam pembuatan soal interaktif menggunakan Quiz Creator sebagai alat bantu dalam evaluasi pembelajaran. Metode pelatihan yang diterapkan meliputi pemaparan materi, demonstrasi langsung, serta sesi praktik mandiri dengan pendampingan untuk memastikan peserta dapat memahami dan mengaplikasikan materi dengan baik. Evaluasi dilakukan dengan membandingkan tingkat pemahaman guru sebelum dan sesudah pelatihan melalui kuisioner serta hasil karya soal interaktif yang mereka buat. Hasil kegiatan menunjukkan bahwa pelatihan ini meningkatkan pemahaman dan keterampilan guru dalam menggunakan Quiz Creator, sehingga mereka dapat menciptakan soal interaktif yang lebih menarik, variatif, dan sesuai dengan kebutuhan peserta didik. Dengan adanya pelatihan ini, diharapkan guru-guru SD Insan Cendekia dapat mengintegrasikan teknologi dalam proses evaluasi pembelajaran, sehingga meningkatkan keterlibatan siswa, efektivitas asesmen, serta kualitas pembelajaran secara keseluruhan
Prediction of Alternative Solar Energy Utilization in Internet of Things Based Systems Using Random Forest Algorithm Natsir, Fauzan; Abdurahman, Abdurahman; Sihombing, Redo Abeputra
Innovation in Research of Informatics (Innovatics) Vol 7, No 1 (2025): March 2025
Publisher : Department of Informatics, Siliwangi University, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.37058/innovatics.v7i1.13096

Abstract

The continuous use of fossil energy is depleting available energy sources, necessitating the adoption of alternative or renewable energy sources, such as solar energy. With rapid technological developments, particularly in Internet of Things (IoT) applications such as ThingSpeak, new monitoring solutions are becoming available. ThingSpeak can be used to monitor and control device outputs efficiently. Controlling the work of the tool is one of the efforts to save energy. In this study utilizing the ThinkSpeak application with the support of the ESP 8266 component to send information obtained through the sensor to be displayed on the monitor screen and set the output on or off. So that electricity is used as needed. The results of this study show that the output of sensor readings that appear from the serial monitor via the Arduino application is almost the same as the display on ThinkSpeak. So that this tool can support energy saving both in terms of solar energy utilization, the tool work control system for utilization according to needs and can also monitor the condition of the battery whether it is still in good or bad condition
Metode Forward chaining untuk Deteksi Gangguan Kejiwaan Dini Bakhtiar, Muhammad Yusuf; Triyadi; Sihombing, Redo Abeputra; Fauzan Natsir
Jurnal Riset Sistem dan Teknologi Informasi Vol. 3 No. 2 (2025): Jurnal Riset Sistem dan Teknologi Informasi (RESTIA)
Publisher : Universitas Aisyiyah Surakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30787/restia.v3i2.1996

Abstract

Mental disorders are specific conditions associated with symptoms and pain that cause disruptions in psychosocial functioning. In general, people who want to diagnose mental disorders need to meet directly with a doctor. This research aims to develop an expert system that can assist in the process of diagnosing mental disorders, where this system can produce decisions equivalent to those of a doctor, so that the public no longer needs to meet a doctor directly for initial diagnosis. This research applies the forward chaining method with 5 types of disorders and 28 types of symptoms, which is a search technique that starts with known facts, then managed with existing data and applies inference rules to reach a conclusion. Thus, the application of this method has the potential to become an innovative solution in supporting the prevention and management of mental disorders from the early stages.
Perancangan Aplikasi Analisis Sentimen Terhadap Opini Penghapusan Skripsi pada Twitter menggunakan Metode Naïve Bayes Triyadi; Sihombing, Redo Abeputra; Natsir, Fauzan
Elconika: Jurnal Teknik Elektro Vol. 2 No. 1 (2023)
Publisher : Universitas Hasyim Asy`ari

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33752/elconika.v2i1.5518

Abstract

Sentimen analysis is a text data mining model to obtain data about positive, neutral, or negative sentimen. Sentimen analysis is provided for people on social media in the delivery of reviews related to developing issues. Twitter is a social media where anyone is free to express their opinions. Twitter has almost 600 million users and generates more than 250 million tweets per day. Therefore, Twitter is considered a rich source of information. One of the topics or issues that have been developing lately in the world of education is related to the statement about the thesis being abolished. With the application of text mining techniques and classification methods we can determine whether the sentimen given by these people is positive, neutral, or negative. Algorithms that are often used in sentimen analysis with the Naïve Bayes classifier method. The challenge of this research is that with unstructured data and large amounts of data, it will be difficult to process and classify the data. To make it easier to process and classify the data, preprocessing stages are carried out before the twitter data is analyzed using the Naïve Bayes algorithm. In the initial stage, the input string will be cut from a sentence and then the process of removing words that are ambiguous or not needed. Then the words are first converted into text based on the basic word so that when weighting the value of the word between several sentences with different affixes is the same value and changing capital letters to lowercase letters. The results of the literature study and testing with this method resulted in the Naïve Bayes algorithm getting an accuracy value of 87.40% from a total of 54 tweets that were used as sample data.