Claim Missing Document
Check
Articles

Found 8 Documents
Search
Journal : Jurnal Informatika dan Teknik Elektro Terapan

ANALISIS SENTIMEN ULASAN APLIKASI PINTU DI GOOGLE PLAY STORE MENGGUNAKAN ALGORITMA NAIVE BAYES Khotimah, Khusnul; Martanto, Martanto; Dikananda, Arif Rinaldi; Rifa'i, Ahmad
Jurnal Informatika dan Teknik Elektro Terapan Vol 13, No 1 (2025)
Publisher : Universitas Lampung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23960/jitet.v13i1.5789

Abstract

Aplikasi berbasis blockchain seperti Pintu semakin populer di Indonesia sebagai platform investasi modern. Namun, tantangan utama dalam menganalisis ulasan pengguna adalah volume data yang besar dan variasi sentimen yang kompleks. Tujuan dari penelitian ini yaitu untuk mengimplementasikan algoritma Naïve Bayes guna meningkatkan analisis sentimen aplikasi Pintu di ulasan Google Play Store. Data ulasan dikumpulkan melalui web scraping dan diproses melalui tahapan pembersihan teks, normalisasi, penghapusan stopwords, tokenisasi, dan translasi. Sentimen diberi label menggunakan TextBlob, dengan menghapus ulasan netral untuk menyederhanakan klasifikasi menjadi positif dan negatif. Ketidakseimbangan data diatasi menggunakan teknik oversampling SMOTE. Dataset akhir terdiri dari 2.510 ulasan positif (92,9%) dan 191 ulasan negatif (7,1%). Hasil evaluasi menunjukkan akurasi model sebesar 95,07%. Presisi dan recall untuk kelas positif masing-masing mencapai 97% dan 98%, namun performa pada kelas negatif masih terbatas dengan presisi 62% dan recall 58%. Teknik SMOTE berhasil meningkatkan performa keseluruhan, meskipun tantangan dalam mengenali sentimen minoritas tetap ada. 
ALGORITMA K-MEANS UNTUK MENINGKATKAN SEGMENTASI POLA KEKERASAN Fithriyani, Nurul Muna; Martanto, Martanto; Dikananda, Arif Rinaldi; Rohman, Dede
Jurnal Informatika dan Teknik Elektro Terapan Vol 13, No 1 (2025)
Publisher : Universitas Lampung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23960/jitet.v13i1.5795

Abstract

Abstrak. Meningkatnya angka kekerasan terhadap perempuan dan anak-anak di berbagai wilayah telah menimbulkan kebutuhan mendesak akan strategi yang efektif untuk mengidentifikasi dan mengelompokkan daerah-daerah yang rawan kekerasan. Penelitian ini bertujuan untuk mengembangkan metode klasterisasi berbasis algoritma K-Means dalam upaya meningkatkan segmentasi pola kekerasan, khususnya dalam kasus yang melibatkan perempuan dan anak. Dengan menggunakan data kekerasan dari berbagai wilayah, algoritma K-Means diterapkan untuk mengelompokkan kasus berdasarkan karakteristik tertentu yang relevan. Hasil penelitian menunjukkan bahwa algoritma K-Means memiliki potensi yang kuat dalam segmentasi data kekerasan dan mampu memberikan hasil yang lebih optimal dibandingkan metode lain pada kasus yang dipelajari. Penelitian ini memberikan wawasan baru dalam pengelompokan data sosial menggunakan pendekatan klasterisasi, yang pada akhirnya dapat meningkatkan upaya penanganan kasus kekerasan di berbagai wilayah. Penelitian ini menggunakan tahapan Knowladge Discovery in Database (KDD). Data yang diperoleh bersumber dari situs portal https://www.kaggle.com/datasets . Metode k-means clustering yang berfungsi untuk memecah dataset menjadi beberapa kelompok/cluster. Berdasarkan hasil penelitian ini terdapat 2 cluster yaitu cluster 0 dengan jumlah anggota 1573 dan cluster 1 dengan jumlah anggota 3431. pengukuran kinerja menggunakan DBI, K=2 dengan tingkat kinerja 0,459 maka tingkat kinerja yang terbaik karena tingkat dalam dex mendekati 0.133 
IMPLEMENTASI TEKNOLOGI QUICK RESPONSE CODE DALAM SISTEM E-TICKETING PADA EVENT ORGANIZER Almadina, Muhammad Fitrian Shousyade; Martanto, Martanto; Dikananda, Arif Rinaldi; Rohman, Dede
Jurnal Informatika dan Teknik Elektro Terapan Vol 13, No 1 (2025)
Publisher : Universitas Lampung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23960/jitet.v13i1.5730

Abstract

Penelitian bertujuan untuk merancang dan menguji seberapa efektif sistem dengan teknologi Quick Response Code untuk mengoptimalkan manajemen acara dan mengevaluasi kepuasan pengguna. Tingkat kepuasan diukur menggunakan metode System Usability Scale (SUS) yang dibagikan kepada 60 responden. Analisis kuesioner menghitung rerata nilai final_score SUS, disertai uji validitas dan reliabilitas menggunakan Cronbach's Alpha. Pengujian Kruskal-Wallis dilakukan untuk menilai perbedaan kepuasan sebelum dan setelah sistem diimplementasi. Hasil analisis menunjukkan nilai rerata final_score SUS sebesar 72.2 (kategori GOOD), dengan tingkat kepuasan HIGH hingga ACCEPTABLE. Uji validitas menyatakan semua pertanyaan valid, dan uji reliabilitas menghasilkan nilai Cronbach Alpha sebesar 0.69, hal ini menunjukkan konsistensi yang baik. Uji Kruskal-Wallis mengungkap perbedaan signifikan (p < 0.001), menunjukkan dampak positif sistem terhadap pengalaman pengguna.
ANALISIS PERBANDINGAN ANTARA PROTOKOL OPEN SHORTEST PATH FIRST DAN BORDER GATEWAY PROTOCOL UNTUK KUALITAS JARINGAN hermansyah, Muhammad ikhwan adholf; -, Martanto -; Dikananda, Arif Rinaldi; Rifa'i, Ahmad
Jurnal Informatika dan Teknik Elektro Terapan Vol 13, No 2 (2025)
Publisher : Universitas Lampung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23960/jitet.v13i2.6179

Abstract

Penelitian ini membandingkan kinerja Open Shortest Path First (OSPF) dan Border Gateway Protocol (BGP) dalam kualitas jaringan, khususnya latency dan stabilitas koneksi. Faktor ini krusial untuk memastikan performa jaringan yang andal, terutama pada sistem dengan tingkat keandalan tinggi. Simulasi dilakukan menggunakan EVE-NG dengan menerapkan kedua protokol pada beberapa Virtual Router dan mengujinya menggunakan Virtual PC (VPC). Pengujian dilakukan dengan perintah ping untuk mengirim paket ICMP ke server eksternal, sementara Wireshark digunakan untuk memantau latency dan kestabilan koneksi. Data dikumpulkan dari beberapa titik uji yang tersebar di jaringan dengan berbagai jumlah hop. Hasil menunjukkan bahwa BGP memiliki latency yang lebih stabil dengan rentang 48.253 ms hingga 59.779 ms, sedangkan OSPF memiliki variasi yang lebih besar antara 47.356 ms hingga 59.130 ms. Meskipun OSPF terkadang memiliki latency lebih rendah, fluktuasi tinggi menunjukkan ketidakstabilan jaringan. Dari segi kestabilan, BGP lebih konsisten dengan variasi antar-paket yang lebih kecil dibandingkan OSPF. Kesimpulannya, BGP lebih cocok untuk jaringan yang membutuhkan kestabilan tinggi, sementara OSPF, meskipun memiliki latency lebih rendah di beberapa kasus, cenderung kurang stabil pada jaringan yang kompleks.
IMPLEMENTASI ALGORITMA REGRESI LINEAR UNTUK MODEL PREDIKSI PENJUALAN DI TOKO AMANDA BROWNIES Syahri, Ibnu Nava; Martanto, Martanto; Dikananda, Arif Rinaldi; Mulyawan, Mulyawan
Jurnal Informatika dan Teknik Elektro Terapan Vol 13, No 2 (2025)
Publisher : Universitas Lampung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23960/jitet.v13i2.6337

Abstract

Teknologi informasi telah mendorong pengembangan metode prediksi berbasis data untuk meningkatkan efisiensi bisnis, termasuk di industri ritel. Amanda Brownies Outlet Kesambi Cirebon menghadapi tantangan dalam memprediksi penjualan akibat pola konsumen yang dinamis. Penelitian ini bertujuan untuk mengembangkan model prediksi penjualan menggunakan regresi linear guna meningkatkan akurasi dan efisiensi pengelolaan stok. Pendekatan CRISP-DM digunakan dalam penelitian ini, dengan enam tahap utama: pemahaman bisnis, pemahaman data, persiapan data, pemodelan, evaluasi, dan implementasi. Data penjualan dari Juni hingga Agustus 2024 digunakan sebagai sumber utama analisis. Model dibangun menggunakan RapidMiner dengan pembagian data 70% untuk pelatihan dan 30% untuk pengujian. Evaluasi model menunjukkan nilai Root Mean Squared Error (RMSE) sebesar 16,890, yang mengindikasikan tingkat kesalahan prediksi yang rendah. Hasil ini menunjukkan bahwa model regresi linear dapat membantu pengelolaan stok secara lebih efektif, mengurangi risiko kelebihan atau kekurangan stok, dan mendukung optimalisasi rantai pasokan. Temuan ini menegaskan efektivitas regresi linear dalam prediksi penjualan dan membuka peluang untuk pengembangan model lebih lanjut dengan mempertimbangkan variabel tambahan atau algoritma machine learning yang lebih kompleks.
ANALISIS PREDIKSI PENJUALAN TISU MENGGUNAKAN REGRESI LINEAR Ardhanur, Ichlas; Martanto, Martanto; Dikananda, Arif Rinaldi; Mulyawan, Mulyawan
Jurnal Informatika dan Teknik Elektro Terapan Vol 13, No 2 (2025)
Publisher : Universitas Lampung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23960/jitet.v13i2.6310

Abstract

Abstrak. Penelitian ini dilakukan untuk mendukung pengambilan keputusan dalam strategi produksi dan distribusi penjualan tisu yang efisien. Dalam dunia bisnis yang semakin kompetitif, prediksi penjualan yang akurat menjadi elemen penting untuk memastikan ketersediaan produk sesuai dengan permintaan pasar sekaligus menghindari kelebihan atau kekurangan stok. Model regresi linear dipilih dalam penelitian ini karena kesederhanaannya, penerapannya yang luas, dan kemampuannya untuk memberikan gambaran hubungan antara variabel-variabel tertentu terhadap penjualan. Penelitian ini bertujuan untuk memprediksi penjualan tisu menggunakan regresi linear dan mengevaluasi keakuratan modelnya melalui metrik R-squared (R²), Mean Squared Error (MSE), Root Mean Squared Error (RMSE), dan Mean Absolute Error (MAE). Hasil penelitian menunjukkan bahwa model regresi linear dapat menjelaskan 83% variasi data penjualan tisu (R² = 0,83), menunjukkan efektivitas model ini dalam menggambarkan hubungan variabel. Namun, nilai RMSE sebesar 78,34 dan MAE sebesar 56,69 menunjukkan adanya kesalahan prediksi yang signifikan. Oleh karena itu, disarankan untuk menambahkan variabel prediktor lain, seperti faktor musiman atau promosi, serta menggunakan model lebih kompleks, seperti regresi non-linear atau Random Forest, untuk hasil yang lebih akurat. Penelitian ini menyimpulkan bahwa regresi linear merupakan metode dasar yang bermanfaat, tetapi pengembangan model dan data yang lebih komprehensif diperlukan untuk meningkatkan akurasi prediksi.
ALGHORITMA BACKPROPAGATION NEURAL NETWORK DENGAN MENGOPTIMASI PARTICLE SWARM OPTIMIZATION UNTUK MEMPREDIKSI SAHAM BANK BCA Muzani, Muhamad; Martanto, Martanto; Dikananda, Arif Rinaldi; Rifai, Ahmad
Jurnal Informatika dan Teknik Elektro Terapan Vol 13, No 2 (2025)
Publisher : Universitas Lampung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23960/jitet.v13i2.6208

Abstract

Pasar saham menjadi instrumen investasi menarik di tengah pesatnya perkembangan teknologi informasi. Namun, volatilitas harga saham yang tinggi sering menyulitkan investor mengambil keputusan. Prediksi harga saham menjadi penting untuk membantu menyusun strategi investasi yang efektif. Penelitian ini menggunakan kerangka kerja Knowledge Discovery in Databases (KDD), mencakup tahap data selection, data preprocessing, data transformation, data mining, dan interpretation/evaluation. Data historis harga saham Bank BCA dikumpulkan dari sumber terpercaya dan dianalisis untuk memilih fitur relevan yang memengaruhi harga saham. Model Backpropagation Neural Network (BPNN) diterapkan untuk prediksi, dengan optimasi menggunakan Particle Swarm Optimization (PSO) guna meningkatkan akurasi dan kecepatan konvergensi model. Evaluasi model dilakukan dengan metrik Squared Error (SE) dan Root Mean Squared Error (RMSE). Hasil menunjukkan SE sebesar 0.325 dengan margin kesalahan ±0.565, menandakan kesalahan prediksi rendah. RMSE sebesar 0.570 dengan margin ±0.000 mengindikasikan model memiliki akurasi tinggi, dengan prediksi yang sangat mendekati nilai aktual.
ALGORITMA REGRESI LINIER UNTUK MENINGKATKAN MODEL PREDIKSI PENJUALAN PADA TOKO DEVANJAYABAN Hardika, Hardika; Martanto, Martanto; Dikananda, Arif Rinaldi; Mulyawan, Mulyawan
Jurnal Informatika dan Teknik Elektro Terapan Vol 13, No 2 (2025)
Publisher : Universitas Lampung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23960/jitet.v13i2.6357

Abstract

Penjualan ban mobil menghadapi tantangan akibat volatilitas pasar dan pola permintaan yang kompleks, sehingga diperlukan model prediksi yang andal. Penelitian ini mengembangkan model prediksi penjualan di Toko Devan Jaya Ban menggunakan regresi linear. Data historis penjualan bulanan (Januari–April 2024) dianalisis dengan metode Knowledge Discovery in Databases (KDD), mencakup seleksi data, preprocessing, transformasi, pemodelan, dan evaluasi. Model dibangun menggunakan RapidMiner dan dievaluasi dengan Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), dan Relative Error (RE). Hasil menunjukkan performa baik dengan RMSE 1.778, MAE 1.478 ± 0.989, dan RE 6.81% ± 5.09%. Preprocessing, seperti normalisasi data dan pemilihan variabel relevan, meningkatkan akurasi model. Regresi linear terbukti efektif dalam memprediksi penjualan serta mendukung optimalisasi stok, perencanaan pemasaran, dan pengambilan keputusan bisnis. Pengembangan lebih lanjut dapat mencakup variabel eksternal seperti tren pasar, musim, dan faktor ekonomi, serta membandingkan regresi linear dengan algoritma pembelajaran mesin lain untuk model yang lebih adaptif.