Claim Missing Document
Check
Articles

Found 29 Documents
Search

Penerapan Metode Single Moving Average Dalam Peramalan Persediaan Bahan Pangan Kukuh Rizqi Liyadi; Heny Pratiwi; Pitrasacha Aditya; Muhammad Ibnu Sa’ad
Brahmana : Jurnal Penerapan Kecerdasan Buatan Vol 4, No 1 (2022): Edisi Desember
Publisher : LPPM STIKOM Tunas Bangsa

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30645/brahmana.v4i1.136

Abstract

Forecasting is a technique that is quite widely used today and has been developed since the 19th century. In line with the development of increasingly sophisticated forecasting techniques accompanied by developments in the use of computers. Forecasting can predict or estimate what will happen in the future using certain techniques so that forecasting has received increasing attention in recent years. Web-based applications are one of the systems that support the development of computer use, therefore in this study, researchers develop web-based applications for forecasting using the Single Moving Average method. In this study, forecasting was carried out using the Single Moving Average method to find out how much food is needed in the following month based on actual data from the previous months. Based on forecasting which was carried out using actual data from December 2021 to June 2022, the results obtained in the following month, namely July 2022, were 2,901 kg.
IMPLEMENTASI ALGORITMA STRING MATCHING UNTUK MENGIDENTIFIKASI KATA/KALIMAT DALAM JUZ 30 BERBASIS ANDROID Hanifah Ekawati; Pitrasacha Aditya; Fariz Mirza Ahmad
Jurnal Informatika Wicida Vol 13 No 1 (2023): Januari 2023
Publisher : STMIK Widya Cipta Dharma

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (670.832 KB)

Abstract

Aplikasi ini bertujuan untuk mengidentifikasi kata/kalimat dalam juz 30 berbasis Android yang dapat membantu kaum muslimin untuk proses menghafal surah dalam Al-Qur’an terutama juz 30. Desain Sistem dari Aplikasi untuk Mengidentifikasi Kata/Kalimat Dalam Juz 30 Menggunakan Algoritma String Matching Berbasis Android ini menggunakan Unifield Modeling Language (UML) yang terdiri dari Use Case Diagram, Activity Diagram, Sequence Diagram, dan Class Diagram. Metode pengembangan sistem yang digunakan yaitu waterfall. Pengujian Sistem yang dilakukan yaitu dengan menggunakan Pengujian Black Box.Penelitian ini menghasilkan Aplikasi untuk Mengidentifikasi kata/kalimat dalam Juz 30 Menggunakan Algoritma String Matching berbasis Android ini diharapkan Agar dapat memberikan manfaat kepada pihak-pihak yang terkait, agar dapat mempermudah mencari suatu surah yang sedang dilantunkan oleh seseorang.
IMPLEMENTASI JARINGAN PPPOE DAN HOTSPOT SERVER RT/RW NET BERBASIS MIKROTIK DENGAN FITUR MIKHMON DI ADINET SAMARINDA SEBERANG Nursobah Nursobah; Pitrasacha Aditya; Supriady Supriady
Jurnal Informatika Wicida Vol 13 No 1 (2023): Januari 2023
Publisher : STMIK Widya Cipta Dharma

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (621.797 KB)

Abstract

Jaringan PPPoE dan Hotspot Server RT/RW Net ini dibangun untuk memberikan internet dengan harga terjangkau dimasyarakat. Metode yang digunakan adalah Network Development Life Cycle (NDLC). Membangun jaringan RT/RW Net didasarkan dari beberapa kriteria. Metode yang digunakan dalam membangun jaringan PPPoE dan Hotspot Server adalah Network Development Life Cycle (NDLC) karena metode tersebut bergantung pada proses pembangunan sebelumnya seperti perencanaan strategi bisnis dan analisa pendistribusian data. Hasil penelitian Implementasi Jaringan PPPoE dan Hotspot Server RT/RW Net berbasis mikrotik dengan fitur mikhmon di Adinet Samarinda Seberang diharapkan dapat membantu pengusaha RT/RW Net dalam membangun jaringan dengan harga terjangkau dimasyarakat
Pembangunan Aplikasi Mobile Pariwisata “gotrip” Menggunakan Metode Waterfall Ika Nurmila Avinda; Yuli Adam Prasetyo; Pitrasacha Adytia
eProceedings of Engineering Vol 2, No 3 (2015): Desember, 2015
Publisher : eProceedings of Engineering

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Sektor pariwisata meningkat dalam beberapa tahun belakangan ini seperti yang telah diperkirakan oleh World Tourisme Organization (WTO) pada tahun 2003. Internet digunakan sebagai tempat berbagi dan sumber informasi tentang lokasi pariwisata. Namun hasil informasi yang berada di internet belum terorganisir, sehingga seringkali menyusahkan para wisatawan untuk mencari informasi yang lebih lengkap dalam waktu yang singkat terutama bagi wisatawan yang ingin melakukan self touring. GoTrip merupakan aplikasi mobile Android yang menjadi tempat berbagi tentang lokasi-lokasi wisata. Member dapat menggunakan fitur-fitur yang terdapat dalam aplikasi, seperti fitur Home untuk melihat ulasan lokasi terbaru, Find untuk mencari lokasi wisata dalam suatu daerah, Nearby untuk melihat lokasi wisata terdekat dari titik lokasi member. Aplikasi ini dibuat dengan menggunakan modified waterfall method. Bahasa pemrograman yang digunakan adalah Java dan PHP, Java untuk pemrograman Android di Eclipse dan PHP untuk menghubungkan Android ke database MySQL. Sistem perencanaan wisata pada aplikasi GoTrip yang telah dibuat dapat memudahkan user untuk melakukan perencanaan wisata dan menjadi tempat berbagi review lokasi wisata yang terorganisir. Usulan lokasi wisata yang dihasilkan mengacu pada titik lokasi pengguna atau lokasi tujuan yang akan dituju. Pengembangan lebih lanjut sebaiknya dapat menambahkan sistem pengusulan wisata yang lebih baik. Konten dan tampilan yang lebih menarik. Kata kunci: crowdsourcing, waterfall, pariwisata, android, aplikasi mobile
KLASIFIKASI PENGGUNAAN DATA TRAFIK INTERNET MENGGUNAKAN ALGORITMA SUPPORT VECTOR MACHINE Pitrasacha Adytia; Wahyuni Wahyuni; Kelik Sussolaikah; Yudha Satria
J-ICON : Jurnal Komputer dan Informatika Vol 11 No 1 (2023): Maret 2023
Publisher : Universitas Nusa Cendana

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35508/jicon.v11i1.10039

Abstract

It is undeniable that nowadays, the internet is essential for various needs. STMIK Widya Cipta Dharma is no exception. The internet is widely used in the campus environment by students, lecturers and education staff. Teaching and learning activities and work in the campus environment are inseparable from the need to use the internet. However, internet usage time sometimes accumulates in certain hours and causes slow internet speeds. This is influenced by the large number of header packets sent in the internet traffic flow, so the connection becomes heavy and feels sluggish. Therefore, a classification method is needed to provide information about the activities of students, lecturers and academic staff using the internet. The classification algorithm used is the Support Vector Machine (SVM). The development method used is SKKNI Number 299 of 2020. The parameters used are the flow of packets sent by the user and packets received by the user. The results of this study are in the form of an SVM algorithm model that can classify current internet traffic usage into four categories, namely Download, Game, SocialNetwork, and Web, which has an accuracy of 64% using the Radial Basis Function (RBF) kernel. The resulting accuracy results are pretty low and make the SVM algorithm unsuitable for classifying internet traffic and the need for other methods to classify internet traffic.
Analisis Dalam Pendukung Keputusan Seleksi Reporter dengan Menerapkan Metode EDAS dan Pembobotan ROC Pitrasacha Adytia; Muhammad Fahmi; Reza Andrea
JURNAL MEDIA INFORMATIKA BUDIDARMA Vol 7, No 2 (2023): April 2023
Publisher : Universitas Budi Darma

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30865/mib.v7i2.6064

Abstract

The community's need for curiosity about the latest information makes news something that is always sought after and never goes extinct. One of the important elements in the world of news is the reporter. Reporters are people who are involved or play an important role in finding the latest information and covering everything that happens and conveying news or facts that happened at the scene directly to the public. In addition, reporters are also tasked with compiling various important information in a systematic and easy-to-understand manner so that the public can understand well about whatever is conveyed by the reporter. However, the amount of data makes it difficult for companies to select potential reporters. Because if done manually it is less effective. To solve these problems, a decision support system was created to assist the company in determining which applicants should be accepted. A decision support system (DSS) is a system that was created with the aim of helping parties who have difficulty making a decision or making an election with large amounts of data. In this study the method used is the EDAS method. the EDAS method is a method that functions to produce a ranking value from several choices so that a calculated value is obtained from each criterion attribute value. Based on the results of the research that has been carried out and has been carried out regarding the selection of prospective reporters who are eligible to be accepted by companies by optimizing the Decision Support System function by implementing the EDAS (Evaluation Based On Distance From Average Solution) method and the Rank Oder Centroid (ROC) weighting method, it is obtained the result is equal to 1.3093 with code B4 on behalf of syahputra as a reporter candidate that the company deserves to accept.
Penerapan Metode EPQ(Economic Production Quantity) Pada Pengendalian Bahan Baku Laundry Di Samarinda Laundry Mart Barbasis Android Hanifah Ekawati; Pitrasacha Adytia; Yunita Yunita
Jurnal Ilmiah Matrik Vol 22 No 1 (2020): Jurnal Ilmiah Matrik
Publisher : Direktorat Riset dan Pengabdian Pada Masyarakat (DRPM) Universitas Bina Darma

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (990.928 KB) | DOI: 10.33557/jurnalmatrik.v22i1.840

Abstract

Samarinda Laundry Mart is a business that provides laundry services, besides that it is also a supplier of laundry raw materials in Samarinda. Control of laundry raw materials in the laundry business is a complicated problem. Therefore one method that can be used for raw material control is the EPQ method (Economic Production Quantity) where the EPQ method can determine the optimal production level, optimal production frequency, optimal time cycle to minimize total inventory costs. The results of this study are made inventory control applications using the EPQ method that can make calculations automatically. Only by entering monthly data that is already available. Users can also make transactions using the application so that all data has been integrated in the database to facilitate management in the laundry business. In addition, this application can also print transaction reports and turnover reports.
Sistem Pendukung Keputusan Penerapan Metode EDAS Dalam Menyeleksi Konten Youtube Terbaik Untuk Anak Usia Dini Salmon Salmon; Pitrasacha Adytia; Muhammad Fahmi
JURNAL MEDIA INFORMATIKA BUDIDARMA Vol 7, No 4 (2023): Oktober 2023
Publisher : Universitas Budi Darma

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30865/mib.v7i4.6747

Abstract

Youtube is an online video platform that has become one of the most popular and widely used websites in the world. YouTube's main goal is to provide facilities for content creators to upload the videos they create, interact with their audiences and provide users with a better and innovative video viewing experience, with features such as video browsing tailored to the user's interests and improved video quality. YouTube content is a term that refers to videos or other material uploaded to the YouTube platform, which is currently one of the largest websites in the world for sharing videos. In selecting Youtube content for early childhood, there are several criteria, namely: entertaining, not pornographic elements, increasing insight, not being violent, being creative. The results showed that the EDAS (Evaluation Based on Distance From Average Solution) method can provide an objective and accurate assessment by considering various relevant criteria. So as to produce YouTube content Omar and Hana ranked first (A2) with a score obtained 0.084 is YouTube content that is appropriate for children at an early age.
Perbandingan Algoritma Machine Learning Dalam Mendeteksi Serangan DDOS Wahyuni; Pitrasacha Adytia
TEMATIK Vol 9 No 2 (2022): Tematik : Jurnal Teknologi Informasi Komunikasi (e-Journal) - Desember 2022
Publisher : LPPM POLITEKNIK LP3I BANDUNG

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.38204/tematik.v9i2.1070

Abstract

Ddos is an attack method by sending a lot of packets into a network that causes the device not to run according to its function. This attack will result in machine or network resources cannot be accessed or used by the user. Various methods are used to detect DDOS attacks on SDN [4] , namely statistical methods, machine learning, SDN architecture, blockchain, Network Function Virtualization, honeynets, network slicing, and moving target defense. Because so many people use machine learning to detect DDoS attacks, it is necessary to do further research to find out which one is the best and has high accuracy. Therefore, a research entitled “Comparison of Machine Learning Algorithms in Detecting DDoS Attacks was made. In this study, three machine learning algorithms will be compared, namely XGBoost, Decision Tree and ANN. The methods used are data acquisition, data understanding, data preparation, modeling, performance evaluation, and conclusions. In this study it can be said that for accuracy, the highest model is XGBoost in determining attacks, but to execute it requires the longest time among other models tested. While Decision tree also has high accuracy, slightly below XGBoost, but the time required to execute is fast or short. Therefore, in this study it can be said that the Decision Tree is the best model in detecting and classifying DDoS attacks.Keywords: Ddos Attack, Machine Learning, Decision Tree, XGBoost, ANN.
Modeling The Prediction of Hard Drive Capacity Usage on Server Computers Based on Linear Regression Wahyuni Wahyuni; Pitrasacha Adytia; Siti Namira Rizqi Astin; Kelik Sussolaikah; Fadly Kasim
Indonesian Journal of Artificial Intelligence and Data Mining Vol 7, No 1 (2024): March 2024
Publisher : Universitas Islam Negeri Sultan Syarif Kasim Riau

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24014/ijaidm.v7i1.28851

Abstract

Bank of XYZ has a server computer that is used to run several information technology application services such as ATMs and others. Because the server computer uses a hard drive, the full hard drive can cause problems with the service not operating properly. Full hard drives occur without being noticed. So that this makes the computer server problematic, resulting in customer dissatisfaction and decreased customer loyalty to Bank XYZ. To solve the problem at XYZ Bank, one of the machine learning algorithms can be used to predict hard drive capacity. The method used to predict hard drive storage or usage. The machine learning algorithm used is Multiple Linear Regression. The results of this study show that the linear regression model successfully predicts the use of hard drive capacity on server computers with a sufficient level of accuracy.But it is still not optimal because only a few servers can be predicted. For further research, may consider using the LSTM (Long Short-Term Memory) algorithm. LSTM is an algorithm that is well-suited for sequence prediction problems, including time series forecasting.