Claim Missing Document
Check
Articles

Found 13 Documents
Search

PEMANFAATAN MESIN BENDING UNTUK MENINGKATKAN KUALITAS PRODUKSI DI BENGKEL LAS SURYA MANDIRI KECAMATAN PURWOSARI KABUPATEN PASURUAN Djoko Hari Praswanto; Eko Yohanes Setyawan; Soeparno Djiwo; Izza Nur Affida
JASTEN (Jurnal Aplikasi Sains Teknologi Nasional) Vol. 3 No. 2 (2022)
Publisher : Lembaga Penelitian dan Pengabdian kepada Masyarakat Institut Teknologi Nasional Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (464.597 KB) | DOI: 10.36040/jasten.v3i2.6034

Abstract

Dalam perkembangan desain pagar atau kanopi pada rumah, sekarang ini banyak desain yang menggunakan lengkungan. Sebelumnya pagar minimalis sangat dikenal dengan model yang minim lengkungan. Dengan perkembangannya untuk menampilkan estetika pagar mengikuti desain rumah, dimana ada beberapa lengkungan pada pagar atau kanopi. Untuk membuat lengkungan pada pagar besi hollow tidak mudah. Jika membuat lengkungan tersebut menggunakan cara manual, lengkungan pada besi hollow tidak simetris dan besi hollow dapat penyok didaerah lengkungan sehingga tampilan pagar menjadi jelek. Dengan kegiatan pengabdian masyarakat ini, solusi yang ditawarkan untuk membuat lengkungan pada besi hollow menggunakan mesin bending skala kecil yang berfungsi membuat lengkungan pada besi hollow kotak ataupun bulat. Mesin bending ini dilengkapi dengan roll yang dapat dirubah menyesuaikan ukuran pipa yang akan dibending. Luaran dalam kegiatan pengabdian masyarakat ini berupa teknologi tepat guna mesin bending, dan publikasi jurnal nasional terkareditasi sinta. Dari hasil kegiatan ini mitra dapat menghemat kurang lebih 15% dari harga pembuatan sebelumnya
Analysis of Hydrogen Gas Production Results in Water Electrolysis Process on Genset Characteristics Djoko Hari Praswanto; Soeparno Djiwo; Bima R. P. D Palevi
JOURNAL OF SCIENCE AND APPLIED ENGINEERING Vol 6, No 1 (2023): JSAE
Publisher : Widyagama University of Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31328/jsae.v6i1.4236

Abstract

Hydrogen gas is a type of alternative fuel for transportation that can serve a number of other potential needs. Water electrolysis is one way to get hydrogen gas. This study aims to determine the results of water electrolysis with three catalysts and mixed metal electrodes which are then applied to generator motor engines. The research method used was an experimental method with variations in electrolysis using KOH and NaOH base catalysts, H2SO4 acid catalysts, and stainless steel 316 electrodes. The best results for H2 gas production in this study were obtained with a 2M H2SO4 catalyst with a gas yield of 244.9mL H2 gas, while The lowest yield in this study was the 1M concentration of 1M NaOH catalyst of 12.5mL. The best results for H2 gas production were varied with pertalite fuel and then tested with a generator engine. Testing the generator motor engine is measured arm length and mass with a machine dynamometer. After testing, the data is obtained which is then analyzed to obtain the value of torque (Nm) and electric motor power (kW), and driving motor power (HP). The maximum energy produced pertalite + H2 gas has increased by 2.27kW on the electric motor and power of 4.13HP on the driving motor, while for pertalite fuel alone the power generated is 1.44kW on the electric motor and power of 2.62HP on the driving motor.[1]        S. A. Grigoriev, V. N. Fateev, D. G. Bessarabov, and P. Millet, “Current status, research trends, and challenges in water electrolysis science and technology,” Int. J. Hydrogen Energy, vol. 45, no. 49, pp. 26036–26058, 2020, doi: 10.1016/j.ijhydene.2020.03.109.[2]        Y. Song, X. Zhang, K. Xie, G. Wang, and X. Bao, “High-Temperature CO2 Electrolysis in Solid Oxide Electrolysis Cells: Developments, Challenges, and Prospects,” Adv. Mater., vol. 31, no. 50, pp. 1–18, 2019, doi: 10.1002/adma.201902033.[3]        A. Nechache and S. Hody, “Alternative and innovative solid oxide electrolysis cell materials: A short review,” Renew. Sustain. Energy Rev., vol. 149, 2021, doi: 10.1016/j.rser.2021.111322.[4]        O. Schmidt, A. Gambhir, I. Staffell, A. Hawkes, J. Nelson, and S. Few, “Future cost and performance of water electrolysis: An expert elicitation study,” Int. J. Hydrogen Energy, vol. 42, no. 52, pp. 30470–30492, 2017, doi: 10.1016/j.ijhydene.2017.10.045.[5]        S. Wang, A. Lu, and C. J. Zhong, “Hydrogen production from water electrolysis: role of catalysts,” Nano Converg., vol. 8, no. 1, 2021, doi: 10.1186/s40580-021-00254-x.[6]        N. A. Burton, R. V. Padilla, A. Rose, and H. Habibullah, “Increasing the efficiency of hydrogen production from solar powered water electrolysis,” Renew. Sustain. Energy Rev., vol. 135, no. July 2020, p. 110255, 2021, doi: 10.1016/j.rser.2020.110255.[7]        J. Brauns and T. Turek, “Alkaline water electrolysis powered by renewable energy: A review,” Processes, vol. 8, no. 2, 2020, doi: 10.3390/pr8020248.[8]        S. Anwar, F. Khan, Y. Zhang, and A. Djire, “Recent development in electrocatalysts for hydrogen production through water electrolysis,” Int. J. Hydrogen Energy, vol. 46, no. 63, pp. 32284–32317, 2021, doi: 10.1016/j.ijhydene.2021.06.191.[9]        W. Tong et al., “Electrolysis of low-grade and saline surface water,” Nat. Energy, vol. 5, no. 5, pp. 367–377, 2020, doi: 10.1038/s41560-020-0550-8.[10]      T. Nguyen, Z. Abdin, T. Holm, and W. Mérida, “Grid-connected hydrogen production via large-scale water electrolysis,” Energy Convers. Manag., vol. 200, no. September, p. 112108, 2019, doi: 10.1016/j.enconman.2019.112108.[11]      A. Buttler and H. Spliethoff, “Current status of water electrolysis for energy storage, grid balancing and sector coupling via power-to-gas and power-to-liquids: A review,” Renew. Sustain. Energy Rev., vol. 82, no. February, pp. 2440–2454, 2018, doi: 10.1016/j.rser.2017.09.003.[12]      I. V. Pushkareva, A. S. Pushkarev, S. A. Grigoriev, P. Modisha, and D. G. Bessarabov, “Comparative study of anion exchange membranes for low-cost water electrolysis,” Int. J. Hydrogen Energy, vol. 45, no. 49, pp. 26070–26079, 2020, doi: 10.1016/j.ijhydene.2019.11.011.[13]      L. Peng and Z. Wei, “Catalyst Engineering for Electrochemical Energy Conversion from Water to Water: Water Electrolysis and the Hydrogen Fuel Cell,” Engineering, vol. 6, no. 6, pp. 653–679, 2020, doi: 10.1016/j.eng.2019.07.028.[14]      S. Klemenz, A. Stegmüller, S. Yoon, C. Felser, H. Tüysüz, and A. Weidenkaff, “Holistic View on Materials Development: Water Electrolysis as a Case Study,” Angew. Chemie - Int. Ed., vol. 60, no. 37, pp. 20094–20100, 2021, doi: 10.1002/anie.202105324.[15]      H. K. Ju, S. Badwal, and S. Giddey, “A comprehensive review of carbon and hydrocarbon assisted water electrolysis for hydrogen production,” Appl. Energy, vol. 231, no. May, pp. 502–533, 2018, doi: 10.1016/j.apenergy.2018.09.125.[16]      F. ezzahra Chakik, M. Kaddami, and M. Mikou, “Effect of operating parameters on hydrogen production by electrolysis of water,” Int. J. Hydrogen Energy, vol. 42, no. 40, pp. 25550–25557, 2017, doi: 10.1016/j.ijhydene.2017.07.015.[17]      F. Gutiérrez-Martín, L. Amodio, and M. Pagano, “Hydrogen production by water electrolysis and off-grid solar PV,” Int. J. Hydrogen Energy, vol. 46, no. 57, pp. 29038–29048, 2021, doi: 10.1016/j.ijhydene.2020.09.098.
OPTIMISATION OF THE MIXTURE OF ACTIVATED CHARCOAL AND RED GINGER EXTRACT WITH THE ADDITION OF SANSEVIERIA TO THE FOOD CABINET FILTER Astuti, Siswi; F. Endah Kusuma Rastini; Ester Priskasari; Djoko Hari Praswanto
Journal of Sustainable Technology and Applied Science (JSTAS) Vol. 4 No. 1 (2023): Journal of Sustainable Technology and Applied Science, May 2023
Publisher : Lembaga Penelitian dan Pengabdian Masyarakat, Institut Teknologi Nasional (ITN) Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36040/jstas.v4i1.5805

Abstract

Spoiled or unhealthy food is the causative agent of a disease called ptomaine poisoning. This disease can come from consuming water, milk, other drinks, or food in raw or cooked form provided in a place that contains agents that can produce disease in sufficient quantities—an amount needed to cause various diseases. Various agents that can cause disease in food are plants, bacteria, chemicals, animals, agents that use food as a means of transferring themselves, radionuclides, and microbes. Food damage caused by microbes is usually due to the condition of the food, which has a high water content, improper storage of food, or types of food that are not durable. Microbes that cause harm can come from slime molds, yeasts, bacteria and viruses in a variety of ways. Can come from polluted air, cross-contamination from food storage areas. The purpose of this research is to make an air filter in a food storage cupboard that has the optimum ability to inhibit the growth of pathogenic microbes so that the stored food is not easily damaged. The method of implementation in this study was to make a filter mixture composition consisting of activated charcoal from bamboo ori, sanseviera, and red ginger extract, where the material has anti-bacterial and antiviral benefits. The filter composition to be tested is a mixture of activated charcoal, sanseviera, and ginger extract. red in the ratio: 3:1:4; 4:1:4; 4:1:3; 2:2:4; 4:2:4; 4:2:2, samples containing protein. The best results that can inhibit the growth of Bacillus substillis are obtained in filters with a composition of 4:2:4.