Claim Missing Document
Check
Articles

Found 25 Documents
Search

Prototipe Alat Pembatasan Pengunjung di Perpustakaan UIN Suska Riau Menggunakan RFID E-KTP Berbasis IoT Nofriandi, Rafli; Jufrizel, Jufrizel; Ullah, Aulia; Zarory, Hilman
BRILIANT: Jurnal Riset dan Konseptual Vol 7 No 4 (2022): Volume 7 Nomor 4, November 2022
Publisher : Universitas Nahdlatul Ulama Blitar

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (471.811 KB) | DOI: 10.28926/briliant.v7i4.1061

Abstract

Universitas adalah salah satu kawasan yang termasuk dalam program Kementerian Pendidikan dan Kebudayaan mengenai pembelajaran tatap muka terbatas (PTM) selama pandemi Covid-19. Pada PTM memberlakukan hanya 50% kapasitas yang boleh memasuki ruangan. Pengunjung perpustakaan UIN Suska Riau hanya diperbolehkan masuk 100 sampai 150 secara rolling mengakibatkan antrean lama untuk memasuki perpustakaan. Perpustakaan merupakan tempat yang sering dikunjungi mahasiswa sebagai referensi tugas perkuliahan. Melalui penelitian ini, dapat membantu mahasiswa dalam berkunjung ke perpustakaan. Alat ini akan memberikan waktu berkunjung ke setiap pengunjung dan memberikan batas maksimal ruangan. Penelitian ini menggunakan website yang berguna sebagai database pengunjung. Sehingga membantu petugas perpustakaan dalam merekap data pengunjung. Penelitian ini menggunakan metode R&D. Hasil penelitian adalah alat ini mampu mengatasi waktu antrean berkunjung dan membantu petugas perpustakaan dalam merekap data pengunjung.
Alat Monitoring Kadar Amonia dan Pengontrolan pH pada Kolam Ikan Lele Berbasis IoT Hendri, Arsyi Mart; Jufrizel, Jufrizel; Zarory, Hilman; Faizal, Ahmad
BRILIANT: Jurnal Riset dan Konseptual Vol 8 No 1 (2023): Volume 8 Nomor 1, Februari 2023
Publisher : Universitas Nahdlatul Ulama Blitar

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28926/briliant.v8i1.1200

Abstract

Kualitas air merupakan parameter yang sangat penting untuk kelangsungan pertumbuhan dan perkembangan ikan. Kadar amonia dan pH pada air merupakan hal penting yang terkait dalam kualitas air. Pada penelitian ini telah dibuat dan dirancang suatu sistem monitoring kadar amonia dan pengontrolan pH air untuk budidaya ikan lele. Untuk pengukuran kadar amonia dan pH air, Penilitian ini menggunakan sensor pH-4502C untuk mendeteksi kandungan pH air dan sensor MQ-135 sebagai pengukur kadar amonia. Setiap sensor akan dihubungkan ke mikrokontroller nodemcu ESP-32 yang telah dilengkapi dengan sistem Internet of Things. Hasil pengukuran akan di kirim ke aplikasi telegram. Pada sistem ini nilai pH akan di jaga tetap netral sesuai dengan kebutuhan ikan lele yaitu 6-8, jika kurang atau lebih dari batas tersebut maka sistem kontrol akan bekerja secara otomatis untuk memberi larutan asam jika air memiliki pH lebih dari 8 dan akan memberi larutan basa jika air memiliki pH kurang dari 6. Pada sistem monitoring dapat dilakukan melalui aplikasi telegram sehingga kadar air dapat dipantau melalui smartphone maupun laptop. Hasil dari pengujian sistem ini menunjukan bahwa sistem dapat bekerja dengan baik dalam mengontrol kualitas air sehingga dapat menciptakan suasana kehidupan yang baik bagi kelangsungan pertumbuhan dan perkembangan ikan lele serta membantu pertumbuhan ikan sebesar 0,3 cm dalam 7 hari.
Fire Detection Design Based on Gas Leakage Accompanied by fire Location Point Using ESP32 Based on IoT Wibowo, Nanda; Zarory, Hilman; Mursyitah, Dian; Ullah, Aulia
PROtek : Jurnal Ilmiah Teknik Elektro Vol 12, No 1 (2025): Protek : Jurnal Ilmiah Teknik Elektro
Publisher : Program Studi Teknik Elektro Universitas Khairun

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33387/protk.v12i1.7744

Abstract

Type B fires are fires that occur due to the burning of fuel in the form of gas, this type of fire occurs quite often where in DKI Jakarta this type of fire occurs in up to 180 cases and one of the causes of this fire is due to LPG gas leaks then at this time the fire extinguisher fire only has 1 method to find the location of the fire, therefore in this research a tool was created that can detect gas leaks and fires which can send danger warning messages to users, namely building owners and firefighters via the telegram application, from research carried out by the tool created to successfully detect the presence of gas leaks when the PPM value of LPG gas exceeds 100 PPM as well as fires when the presence of fire is detected, the carbon dioxide value in smoke exceeds 100 PPM, and also high temperatures, the tool will identify dangerous conditions and send a danger warning message to the user along with the coordinates and Google Maps link for the location of the equipment when a fire occurs.
Implementation of Fuzzy Logic in the Monitoring and Controlling System for Temperature and pH of Fry Aquarium Water Betta Fish Based on the Internet of Things Wahyudi, Rico; Ullah, Aulia; Zarory, Hilman; Faizal, Ahmad
PROtek : Jurnal Ilmiah Teknik Elektro Vol 12, No 1 (2025): Protek : Jurnal Ilmiah Teknik Elektro
Publisher : Program Studi Teknik Elektro Universitas Khairun

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33387/protk.v12i1.7619

Abstract

A problem faced by betta fish farmers is the difficulty in monitoring and controlling the temperature and pH of the water in betta fish fry ponds. This condition causes many deaths of Betta fish fry which results in a reduction in the supply of Betta fish seeds. To overcome this problem, a system based on the Internet of Things was developed(IoT) which can monitor in real time and control the temperature and pH of the water in the Betta fish fry pond. This system is implemented in an aquarium equipped with artificial intelligence in decision making which aims to keep the temperature and pH of the aquarium water stable. The components used in this system include ESP32, DS18B20 temperature sensor, water pH sensor, Thermo Electric Cooler (TEC), heater, DC pump, and fuzzy logic implementation. The results of system testing for 14 days showed that the system was able to monitor and control the temperature and pH of the aquarium water, maintaining ideal conditions for Betta fish fry with an average temperature of 28.79°C and an average water pH of 7.45. The system also succeeded in reducing the mortality rate of Betta fish fry, as proven in comparative tests between aquariums without system implementation and aquariums with system implementation. In this trial, each aquarium was filled with 30 betta fish fry. The results showed that the aquarium with system implementation was able to reduce the death rate of Betta fish fry by 5 or 16.67% from a total of 30 fish. Meanwhile, aquariums without system implementation had a death rate of 12 betta fish fry or 40% of the total of 30 betta fish fry.
Fault Detection In Storage Tank System Using Luenbeger Observer (LO): Simulation-Based Validation. Mursyitah, Dian; Faizal, Ahmad; Zarory, Hilman; Sari, Sitri Permata
JURNAL NASIONAL TEKNIK ELEKTRO Vol 14, No 3: November 2025
Publisher : Jurusan Teknik Elektro Universitas Andalas

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25077/jnte.v14n3.1332.2025

Abstract

This study presents a comprehensive, simulation-based validation of a Luenberger Observer (LO) specifically designed for fault detection in storage tank systems. It commences with the development of a nonlinear storage tank model, which is subsequently linearized to streamline the observer design process. The LO estimates critical system states and produces residual signals that enable reliable fault detection. The observer gain is meticulously chosen using pole placement techniques to ensure rapid convergence of estimates and overall stability. To evaluate the effectiveness of this approach, three distinct fault scenarios—ramp, square pulse, and inverted ramp signals—are introduced to simulate various types of abnormal conditions that could occur in real-world operations. Simulation results demonstrate that the LO accurately estimates the liquid level states with a mean absolute error of approximately 0.02 meters, equivalent to about 2.6%. Furthermore, the observer detects faults with an average delay between 5 and 9 seconds following fault injection, indicating its prompt response capability. Notably, even with sensor noise levels reaching 6%, the observer maintains stable tracking performance, demonstrating strong robustness against disturbances. Across all tested scenarios, the residual signals show rapid increases during fault conditions and swiftly return near zero once the system reverts to normal operation, with no false alarms observed. Collectively, these results suggest that the Luenberger Observer provides an accurate, rapid, and disturbance-tolerant method for fault detection in storage tank systems. Such an approach offers a practical alternative to data-driven fault detection methodologies, as it relies less on extensive training datasets and can be more readily implemented for real-time industrial monitoring applications.