Claim Missing Document
Check
Articles

Found 1 Documents
Search
Journal : Indonesian Journal of Electrical Engineering and Computer Science

Deep learning-based cryptanalysis in recovering the secret key and plaintext on lightweight cryptography Fatma, Yulia; Remli, Muhammad Akmal; Mohamad, Mohd Saberi; Al Amien, Januar
Indonesian Journal of Electrical Engineering and Computer Science Vol 38, No 2: May 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v38.i2.pp1115-1123

Abstract

The development of machine learning (ML) technologies provide a new development direction for cryptanalysis. Several ML research in the field of cryptanalysis was carried out to identify the cryptographic algorithm used, find out the secret key, and even recover the secret message The first objective of this study is to see how much influence optimization and activation function have on the multi-layer perceptron (MLP) model in performing cryptanalysis. The second research objective, which is to compare the performance of cryptanalysis in recovering keys and the plaintext. Several experiments have been carried out, the observed parameters found that the use of the rectified linear unit (ReLU) activation function and the ADAM optimizer improves the performance of deep learning (DL)-based cryptanalysis as evidenced by a significantly smaller error rate. DL-based cryptanalysis works more effectively in recovering keys than recovering plaintext. DL-based cryptanalysis managed to recover the keys with an average loss of 0.007, an average of 49 epochs, and an average time of 0.178 minutes.