Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : Indonesian Journal of Electrical Engineering and Computer Science

A hybrid data mining for predicting scholarship recipient students by combining K-means and C4.5 methods Halifia Hendri; Harkamsyah Andrianof; Riska Robianto; Hasri Awal; Okta Andrica Putra; Romi Wijaya; Aggy Pramana Gusman; Muhammad Hafizh; Muhammad Pondrinal
Indonesian Journal of Electrical Engineering and Computer Science Vol 33, No 3: March 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v33.i3.pp1726-1735

Abstract

This scholarly investigation delves into the strong desire for academic scholarships within the student body, especially prominent among socioeconomically disadvantaged individuals. The study aims to formulate a hybrid data mining paradigm by synergizing the K-means and C4.5 methodologies. K-means is applied for clusterization, while C4.5 facilitates prediction and decision tree instantiation. The research unfolds in sequential phases, commencing with data input and progressing through meticulous pre-processing, encompassing data selection, cleaning, and transformation. The novelty lies in successfully integrating the K-means and C4.5 methodologies, culminating in the hybrid data mining method. The dataset comprises 200 students seeking scholarships, revealing effective stratification into three clusters—cluster 0, cluster 1, and cluster 2—with 119, 48, and 33 students, respectively. The K-means method proves highly suitable, especially when combined with C4.5, for predicting scholarship recipients. A subset of 81 students from clusters 1 and 2 undergoes predictive modeling using C4.5, resulting in a commendable 85% accuracy, with 17 accurate forecasts and 3 minor inaccuracies. This research significantly enhances scholarship selection efficiency, particularly benefiting socioeconomically disadvantaged students.
Improved feature extraction method and K-means clustering for soil fertility identification based on soil image Ramadhanu, Agung; Hendri, Halifia; Enggari, Sofika; Andini, Silfia; Devita, Retno; Rianti, Eva
Indonesian Journal of Electrical Engineering and Computer Science Vol 38, No 3: June 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v38.i3.pp2001-2011

Abstract

This research is conducting analysis of digital land images using digital image processing techniques. The main purpose of the research is to classify soil fertility based on two-dimensional RGB colored digital soil images. The research is done by extracting features and shapes from the soil image. The research uses methods of segmentation, extraction, and identification against digital soil images. This research is carried out in three stages. The first phase of this research is image pre-processing which begins with the conversion of RGB color image to Grayscale then color conversion to binary which subsequently performs noise reduction with the method Three-layer median filter. The second stage is a process that is divided into the first two stages, namely the process of segmentation by grouping RGB color images into L*a*b which is continued by clustering using the K-means clustering method. The second is the extraction of characteristics of the soil image which is characteristic of shape and texture. The final stage is the identification of soil images that are clustered into two types: fertile soils and unfertile soil. The study achieved an accuracy of 85% which could accurately identify 20 images while inaccurately classifying 5 images out of a total of 25 input images.