Claim Missing Document
Check
Articles

Found 3 Documents
Search

Advancements in electrical systems for E-bike battery charging: a technical examination of conventional and wireless power transfer technologies Bunyamin, Wan Muhamad Hakimi Wan; Baharom, Rahimi; Munim, Wan Noraishah Wan Abdul; Zolkiffly, Mohd Zaid; Ahmad, Ahmad Sukri
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 15, No 3: September 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijpeds.v15.i3.pp1617-1632

Abstract

Electric bicycles (E-bikes) are becoming key to making transportation more eco-friendly, leading to cleaner air, and lower carbon emissions. The rising popularity of E-bikes calls for innovative battery charging solutions that cater to their specific needs, emphasizing faster charging, high energy efficiency, safety, compact design, smart features, and compliance with international standards. This paper reviews existing and new charging technologies for E-bikes, focusing on their design, charging processes, and safety features. It points out the issues with traditional chargers, such as their negative effects on power quality and grid stability, and introduces wireless power transfer (WPT) as a groundbreaking approach to E-bike charging. WPT enhances convenience by removing the need for physical cables and is seen as a step forward with the integration of power factor correction techniques for better efficiency and energy use. The discussion extends to the future of E-bike charging, exploring emerging technologies that could redefine electric transportation. The study aims to deepen the understanding of E-bike battery charging technologies, their challenges, and future directions, contributing to the advancement of E-bike technology.
Enhancing power quality: An Adaline algorithm for direct resonance current extraction in shunt active power filter Rahman, Nor Farahaida Abdul; Zainuri, Muhammad Ammirrul Atiqi Mohd; Hannoon, Naeem M. S.; Hidayat, Muhamad Nabil; Baharom, Rahimi; Munim, Wan Noraishah Wan Abdul
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 15, No 4: December 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijpeds.v15.i4.pp2470-2479

Abstract

This paper presents an adaptive linear neuron (Adaline) algorithm designed to extract resonance current from the supply current directly. It aims to reduce the computation burden while upholding efficacy in the extraction process. The approach involves establishing the primary power system, evaluating harmonic and resonance current impacts, formulating efficient extraction strategies based on current waveform characteristics, employing the Adaline algorithm for extraction, and constructing a single-phase shunt active power filter (SAPF) to address harmonic currents and parallel resonance effects. Comparative analysis demonstrates the Adaline algorithm’s precision in extracting current amplitudes pre- and post-SAPF implementation. However, observed disparities in extracted resonance current amplitude may stem from the algorithm’s limitations in capturing low-amplitude signals. While a gain adjustment effectively boosts amplitude. However, it introduces considerable ripple and inconsistency, likely linked to parallel resonance effects. Notably, the SAPF exhibits simultaneous harmonic compensation and resonance damping capabilities. Results affirm the SAPF’s effectiveness in reducing harmonic components across all frequencies, including resonance frequency. Furthermore, resonance damping is crucial for further improving SAPF performance and reducing resonance current. This results in significantly improved waveform quality and reduced total harmonic distortion (THD) and individual harmonic distortion (THDi) values of compensated supply current.
Comparative assessment of an improved asymmetrical fuzzy logic control-based maximum power point tracking for photovoltaic systems under partially shaded conditions Ariffin, Athirah Batrisyia Kamal; Zakaria, Muhammad Iqbal; Munim, Wan Noraishah Wan Abdul; Kamarudin, Muhammad Nizam; El Fezazi, Nabil
International Journal of Electrical and Computer Engineering (IJECE) Vol 15, No 3: June 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v15i3.pp2642-2654

Abstract

This paper presents an enhanced asymmetrical fuzzy logic control (AFLC) based maximum power point tracking (MPPT) algorithm designed for photovoltaic (PV) systems under partial shading conditions (PSCs). With the increasing global energy demand and growing environmental concerns, maximizing solar energy efficiency has become more essential than ever. The proposed AFLC-MPPT algorithm tackles the challenges of accurately tracking the global maximum power point (GMPP) in PSCs, where conventional methods frequently underperform. By utilizing asymmetrical membership functions and optimized rule sets, the algorithm significantly improves sensitivity and precision in detecting and responding to variations in shading. Simulations conducted in MATLAB/Simulink compare the performance of the proposed AFLC-based MPPT with the conventional perturb and observe (P&O) method across multiple shading scenarios. The results demonstrate that the AFLC approach outperforms the conventional method in terms of tracking speed, stability, and overall efficiency, particularly in dynamically changing environmental conditions. Furthermore, the AFLC algorithm provides substantial improvements in voltage regulation, reduces settling time, and minimizes steady-state oscillations, contributing to the more efficient and reliable operation of PV systems under partial shading conditions.