Claim Missing Document
Check
Articles

Found 20 Documents
Search

Predicting rainfall runoff in Southern Nigeria using a fused hybrid deep learning ensemble Ojugo, Arnold Adimabua; Ejeh, Patrick Ogholuwarami; Odiakaose, Christopher Chukwufunaya; Eboka, Andrew Okonji; Emordi, Frances Uchechukwu
International Journal of Informatics and Communication Technology (IJ-ICT) Vol 13, No 1: April 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijict.v13i1.pp108-115

Abstract

Rainfall as an environmental feat can change fast and yield significant influence in downstream hydrology known as runoff with a variety of implications such as erosion, water quality, and infrastructures. These, in turn impact the quality of life, sewage systems, agriculture, and tourism of a nation to mention a few. It chaotic, complex, and dynamic nature has necessitated studies in the quest for future direction of such runoff via prediction models. With little successes in use of knowledge driven models, many studies have now turned to data-driven models. Dataset is retrieved from Metrological Center in Lagos, Nigeria for the period 1999-2019 for the Benin-Owena River Basin. Data is split: 70% for train and 30% for test. Our study adapts a spatial-temporal profile hidden Markov trained deep neural network. Result yields a sensitivity of 0.9, specificity 0.19, accuracy of 0.74, and improvement rate of classification of 0.12. Other ensembles underperformed when compared to proposed model. The study reveals annual rainfall is an effect of variation cycle. Models will help simulate future floods and provide lead time warnings in flood management.
Pilot Study on Enhanced Detection of Cues over Malicious Sites Using Data Balancing on the Random Forest Ensemble Okpor, Margaret Dumebi; Aghware, Fidelis Obukohwo; Akazue, Maureen Ifeanyi; Eboka, Andrew Okonji; Ako, Rita Erhovwo; Ojugo, Arnold Adimabua; Odiakaose, Christopher Chukwufunaya; Binitie, Amaka Patience; Geteloma, Victor Ochuko; Ejeh, Patrick Ogholuwarami
Journal of Future Artificial Intelligence and Technologies Vol. 1 No. 2 (2024): September 2024
Publisher : Future Techno Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62411/faith.2024-14

Abstract

The digital revolution frontiers have rippled across society today – with various web content shared online for users as they seek to promote monetization and asset exchange, with clients constantly seeking improved alternatives at lowered costs to meet their value demands. From item upgrades to their replacement, businesses are poised with retention strategies to help curb the challenge of customer attrition. The birth of smartphones has proliferated feats such as mobility, ease of accessibility, and portability – which, in turn, have continued to ease their rise in adoption, exposing user device vulnerability as they are quite susceptible to phishing. With users classified as more susceptible than others due to online presence and personality traits, studies have sought to reveal lures/cues as exploited by adversaries to enhance phishing success and classify web content as genuine and malicious. Our study explores the tree-based Random Forest to effectively identify phishing cues via sentiment analysis on phishing website datasets as scrapped from user accounts on social network sites. The dataset is scrapped via Python Google Scrapper and divided into train/test subsets to effectively classify contents as genuine or malicious with data balancing and feature selection techniques. With Random Forest as the machine learning of choice, the result shows the ensemble yields a prediction accuracy of 97 percent with an F1-score of 98.19% that effectively correctly classified 2089 instances with 85 incorrectly classified instances for the test-dataset.
Hypertension Detection via Tree-Based Stack Ensemble with SMOTE-Tomek Data Balance and XGBoost Meta-Learner Odiakaose, Christopher Chukwufunaya; Aghware, Fidelis Obukohwo; Okpor, Margaret Dumebi; Eboka, Andrew Okonji; Binitie, Amaka Patience; Ojugo, Arnold Adimabua; Setiadi, De Rosal Ignatius Moses; Ibor, Ayei Egu; Ako, Rita Erhovwo; Geteloma, Victor Ochuko; Ugbotu, Eferhire Valentine; Aghaunor, Tabitha Chukwudi
Journal of Future Artificial Intelligence and Technologies Vol. 1 No. 3 (2024): December 2024
Publisher : Future Techno Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62411/faith.3048-3719-43

Abstract

High blood pressure (or hypertension) is a causative disorder to a plethora of other ailments – as it succinctly masks other ailments, making them difficult to diagnose and manage with a targeted treatment plan effectively. While some patients living with elevated high blood pressure can effectively manage their condition via adjusted lifestyle and monitoring with follow-up treatments, Others in self-denial leads to unreported instances, mishandled cases, and in now rampant cases – result in death. Even with the usage of machine learning schemes in medicine, two (2) significant issues abound, namely: (a) utilization of dataset in the construction of the model, which often yields non-perfect scores, and (b) the exploration of complex deep learning models have yielded improved accuracy, which often requires large dataset. To curb these issues, our study explores the tree-based stacking ensemble with Decision tree, Adaptive Boosting, and Random Forest (base learners) while we explore the XGBoost as a meta-learner. With the Kaggle dataset as retrieved, our stacking ensemble yields a prediction accuracy of 1.00 and an F1-score of 1.00 that effectively correctly classified all instances of the test dataset.
Stacked Learning Anomaly Detection Scheme with Data Augmentation for Spatiotemporal Traffic Flow Binitie, Amaka Patience; Odiakaose , Christopher Chukwufunaya; Okpor, Margaret Dumebi; Ejeh, Patrick Ogholuwarami; Eboka, Andrew Okonji; Ojugo, Arnold Adimabua; Setiadi, De Rosal Ignatius Moses; Ako, Rita Erhovwo; Aghaunor, Tabitha Chukwudi; Geteloma, Victor Ochuko; Afotanwo, Anderson
Journal of Fuzzy Systems and Control Vol. 2 No. 3 (2024): Vol. 2, No. 3, 2024
Publisher : Peneliti Teknologi Teknik Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.59247/jfsc.v2i3.267

Abstract

The digital revolution births transformation in many facets of today’s society. Its adoption in transportation to curb traffic congestion in major cities globally advances smart-city initiatives. Challenges of population growth, lack of datasets, and aging infrastructure have necessitated the need for traffic analytics. Studies have estimated an associated global annual loss of $583 billion to traffic congestion for 2023. This, caused fuel wastage, loss of time, and increased costs across congested areas. With the cost of building more road networks, cities must advance new ways to improve traffic flow via anomaly detection as an early warning in the flow pattern. Our study posits stacked learning with extreme gradient boost as a meta-learner to help address imbalanced datasets, yield faster model construction, and ensure improved performance via enhanced anomalous data detection.
Pilot study on deploying a wireless sensor-based virtual-key access and lock system for home and industrial frontiers Eboka, Andrew Okonji; Aghware, Fidelis Obukohwo; Okpor, Margaret Dumebi; Odiakaose, Christopher Chukufunaya; Okpako, Ejaita Abugor; Ojugo, Arnold Adimabua; Ako, Rita Erhovwo; Binitie, Amaka Patience; Onyemenem, Innocent Sunny; Ejeh, Patrick Ogholuwarami; Geteloma, Victor Ochuko
International Journal of Informatics and Communication Technology (IJ-ICT) Vol 14, No 1: April 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijict.v14i1.pp287-297

Abstract

The rise in data processing activities vis-à-vis the consequent rise in adoption and adaptation of information and communication tech related approaches to resolve societal challenges has become both critical and imperative. Virtualization have become the order of the day to bridge various lapses of human mundane tasks and endeavors. Its positive impacts on society cannot be underestimated. This study advances a virtual wireless sensor-based key-card access system with cost-effective solution to manage access to restricted areas within a facility. We seek to integrate virtual key card access, web-access control, solenoid lock integration, and ESP32- controller to create a dependable internet of things (IoT)-enabled access control system. Results show system benefit includes improved security, improved convenience, privacy, efficiency with real-time control capabilities that will allows building administrators to track and manage access to the facility remotely.
Investigating an Anomaly-based Intrusion Detection via Tree-based Adaptive Boosting Ensemble Onoma, Paul Avweresuo; Agboi, Joy; Geteloma, Victor Ochuko; Max-Egba, Asuobite ThankGod; Eboka, Andrew Okonji; Ojugo, Arnold Adimabua; Odiakaoase, Christopher Chukwufunaya; Ugbotu, Eferhire Valentine; Aghaunor, Tabitha Chukwudi; Binitie, Amaka Patience
Journal of Fuzzy Systems and Control Vol. 3 No. 1 (2025): Vol. 3, No. 1, 2025
Publisher : Peneliti Teknologi Teknik Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.59247/jfsc.v3i1.279

Abstract

The eased accessibility, mobility, and portability of smartphones have caused the consequent rise in the proliferation of users' vulnerability to a variety of phishing attacks. Some users are more vulnerable due to factors like personality behavioral traits, media presence, and other factors. Our study seeks to reveal cues utilized by successful attacks by identifying web content as genuine and malicious data. We explore a sentiment-based extreme gradient boost learner with data collected over social platforms, scraped using the Python Google Scrapper. Our results show AdaBoost yields a prediction accuracy of 0.9989 to correctly classify 2148 cases with incorrectly classified 25 cases. The result shows the tree-based AdaBoost ensemble can effectively identify phishing cues and efficiently classify phishing lures against unsuspecting users from access to malicious content.
Investigating a SMOTE-Tomek Boosted Stacked Learning Scheme for Phishing Website Detection: A Pilot Study Ugbotu, Eferhire Valentine; Emordi, Frances Uchechukwu; Ugboh, Emeke; Anazia, Kizito Eluemunor; Odiakaose, Christopher Chukwufunaya; Onoma, Paul Avwerosuoghene; Idama, Rebecca Okeoghene; Ojugo, Arnold Adimabua; Geteloma, Victor Ochuko; Oweimieotu, Amanda Enaodona; Aghaunor, Tabitha Chukwudi; Binitie, Amaka Patience; Odoh, Anne; Onochie, Chris Chukwudi; Ezzeh, Peace Oguguo; Eboka, Andrew Okonji; Agboi, Joy; Ejeh, Patrick Ogholuwarami
Journal of Computing Theories and Applications Vol. 3 No. 2 (2025): JCTA 3(2) 2025
Publisher : Universitas Dian Nuswantoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62411/jcta.14472

Abstract

The daily exchange of informatics over the Internet has both eased the widespread proliferation of resources to ease accessibility, availability and interoperability of accompanying devices. In addition, the recent widespread proliferation of smartphones alongside other computing devices has continued to advance features such as miniaturization, portability, data access ease, mobility, and other merits. It has also birthed adversarial attacks targeted at network infrastructures and aimed at exploiting interconnected cum shared resources. These exploits seek to compromise an unsuspecting user device cum unit. Increased susceptibility and success rate of these attacks have been traced to user's personality traits and behaviours, which renders them repeatedly vulnerable to such exploits especially those rippled across spoofed websites as malicious contents. Our study posits a stacked, transfer learning approach that seeks to classify malicious contents as explored by adversaries over a spoofed, phishing websites. Our stacked approach explores 3-base classifiers namely Cultural Genetic Algorithm, Random Forest, and Korhonen Modular Neural Network – whose output is utilized as input for XGBoost meta-learner. A major challenge with learning scheme(s) is the flexibility with the selection of appropriate features for estimation, and the imbalanced nature of the explored dataset for which the target class often lags behind. Our study resolved dataset imbalance challenge using the SMOTE-Tomek mode; while, the selected predictors was resolved using the relief rank feature selection. Results shows that our hybrid yields F1 0.995, Accuracy 0.997, Recall 0.998, Precision 1.000, AUC-ROC 0.997, and Specificity 1.000 – to accurately classify all 2,764 cases of its held-out test dataset. Results affirm that it outperformed bench-mark ensembles. Result shows the proposed model explored UCI Phishing Website dataset, and effectively classified phishing (cues and lures) contents on websites.
Phishing Website Detection via a Transfer Learning based XGBoost Meta-learner with SMOTE-Tomek Agboi, Joy; Emordi, Frances Uche; Odiakaose, Christopher Chukwufunaya; Idama, Rebecca Okeoghene; Jumbo, Evans Fubara; Oweimieotu, Amanda Enaodona; Ezzeh, Peace Oguguo; Eboka, Andrew Okonji; Odoh, Anne; Ugbotu, Eferhire Valentine; Onoma, Paul Avwerosuoghene; Ojugo, Arnold Adimabua; Aghaunor, Tabitha Chukwudi; Binitie, Amaka Patience; Onochie, Christopher Chukwudi; Ejeh, Patrick Ogholuwarami; Nwozor, Blessing Uche
Journal of Fuzzy Systems and Control Vol. 3 No. 3 (2025): Vol. 3 No. 3 (2025)
Publisher : Peneliti Teknologi Teknik Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.59247/jfsc.v3i3.325

Abstract

The widespread proliferation of smartphones has advanced portability, data access ease, mobility, and other merits; it has also birthed adversarial targeting of network resources that seek to compromise unsuspecting user devices. Increased susceptibility was traced to user's personality, which renders them repeatedly vulnerable to exploits. Our study posits a stacked learning model to classify malicious lures used by adversaries on phishing websites. Our hybrid fuses 3-base learners (i.e. Genetic Algorithm, Random Forest, Modular Net) with its output sent as input to the XGBoost. The imbalanced dataset was resolved via SMOTE-Tomek with predictors selected using a relief rank feature selection. Our hybrid yields F1 0.995, Accuracy 1.000, Recall 0.998, Precision 1.000, MCC 1.000, and Specificity 1.000 – to accurately classify all 3,316 cases of its held-out test dataset. Results affirm that it outperformed benchmark ensembles. The study shows that our proposed model, as explored on the UCI Phishing Website dataset, effectively classified phishing (cues and lures) contents on websites.
EcoSMEAL: Energy Consumption with Optimization Strategy via a Secured Smart Monitor-Alert Ensemble Aghaunor, Tabitha Chukwudi; Agboi, Joy; Ugbotu, Eferhire Valentine; Onoma, Paul Avweresuoghene; Ojugo, Arnold Adimabua; Odiakaose, Christopher Chukwufunaya; Eboka, Andrew Okonji; Ezzeh, Peace Oguguo; Geteloma, Victor Ochuko; Binitie, Amaka Patience; Orobor, Anderson Ise; Nwozor, Blessing Uche; Ejeh, Patrick Ogholuwarami; Onochie, Christopher Chukwudi
Journal of Fuzzy Systems and Control Vol. 3 No. 3 (2025): Vol. 3 No. 3 (2025)
Publisher : Peneliti Teknologi Teknik Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.59247/jfsc.v3i3.319

Abstract

The global demand for automation that seeks the efficient consumption and usage of energy via the adoption of embedded-fit management solutions that yield improved performance with reduced consumption has become the new norm. These explore sensor-based units in their own right with eco-friendly platforms that raise germane environmental, health, and consumption regulation(s) concerns that have today become a global issue, even when they proffer improved life standards that replace traditional solutions. Our study posits an embedded sensor design to observe environmental conditions associated with energy consumption by residential or home appliances. It utilizes a machine learning scheme and algorithm to analyze the total energy consumed by each appliance and delivers optimal consumption that reduces energy waste. The system was tested across multiple parameters and found to yield desired effectiveness, reliability, and efficiency. Our utilization of the ESP8266 and ThingSpeak is able to handle extensive inputs without significant delays or data losses. Results affirms the system ability to maintain stable performance even with more devices connected to the unit.
Empirical Evaluation for Intelligent Predictive Models in Prediction of Potential Cancer Problematic Cases In Nigeria Ojugo, Arnold Adimabua; Obruche, Chris Obaro; Eboka, Andrew Okonji
ARRUS Journal of Mathematics and Applied Science Vol. 1 No. 2 (2021)
Publisher : PT ARRUS Intelektual Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35877/mathscience614

Abstract

The rapid rate as well as the volume in amount of data churned out on daily basis has necessitated the need for data mining process. Advanced by the field of data science with machine learning approaches as new paradigm and platform, it has become imperative to provide beneficial support in constructing models that can effectively assist domain experts/practitioners – to make comprehensive decisions regarding potential cases. The study uses deep learning prognosis to effectively respond to problematic cases of cancer in Nigeria. We use the fuzzy rule-based memetic model to predict potential problematic cases of cancer – predicting results from data samples collected from the Epidemiology laboratory at Federal Medical Center Asaba, Nigeria. Dataset is split into training (85%) and testing (15%) to aid model validation. Results indicate that age, obesity, environmental conditions and family relations (to the first and second degree) are critical factors to be watched for benign and malignant cancer types. Constructed model result shows high predictive capability strength compared to other models presented on similar studies.