Claim Missing Document
Check
Articles

Found 4 Documents
Search

KAJIAN TEKNO EKONOMI UPGRADING BIOGAS BERBASIS POME DENGAN TEKNOLOGI WATER SCRUBBER Sugiyono, Agus; Juwita, Asmi Rima; Hastuti, Zulaicha Dwi; Fitriana, Ira
JTERA (Jurnal Teknologi Rekayasa) Vol 4, No 1: June 2019
Publisher : Politeknik Sukabumi

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (419.409 KB) | DOI: 10.31544/jtera.v4.i1.2019.61-68

Abstract

Biometana dari POME (palm oil mill effluent) merupakan energi terbarukan yang dapat dimanfaatkan sebagai substitusi gas alam dan LPG. Produksi biometana dapat mencapai 10% dari konsumsi gas bumi saat ini atau setara dengan 20% dari konsumsi LPG bila keseluruhan kapasitas produksi pabrik kelapa sawit dioptimalkan. Salah satu teknologi untuk produksi biometana yang sudah komersial untuk skala industri adalah water scrubber. Penerapan teknologi ini, khususnya di pabrik kelapa sawit Sei Pagar, Riau dengan kapasitas 250 Nm3/jam, belum ekonomis. Makalah ini bertujuan untuk melakukan kajian tekno ekonomi upgrading biogas berbasis POME dengan teknologi water scrubber. Berdasarkan hasil kajian yang dilakukan, biaya investasi upgrading biogas plant mencapai 53,2 miliar rupiah, sedangkan biaya operasi dan perawatannya mencapai 8,3 miliar rupiah. Harga biometana masih lebih mahal dari pada harga gas bumi sebesar 5,62 USD/MMBTU. Pada harga gas di atas 18,5 USD/MMBTU, upgrading biogas plant layak untuk dikembangkan. Kendala yang dihadapi dalam mencapai kelayakan adalah biaya investasi yang mahal serta harga gas bumi yang lebih murah. Berbagai kebijakan seperti transisi energi dan feed in tariff untuk energi terbarukan serta penerapan biaya eksternalitas dan depletion premium untuk energi fosil diharapkan dapat mendorong kelayakan penggunaan biometana berbasis POME di masa mendatang.
PEMANFAATAN PURE PLANT OIL (PPO) DARI KELAPA SAWIT UNTUK MENGURANGI KONSUMSI BAHAN BAKAR SOLAR DI PLTD TALANG PADANG Priyanto, Unggul; Prasetyo, Dwi Husodo; Rosyadi, Erlan; Murti, Galuh Wirama; Hastuti, Zulaicha Dwi; Syaftika, Novi
Majalah Ilmiah Pengkajian Industri Vol 13, No 3 (2019): Majalah Ilmiah Pengkajian Industri
Publisher : BPPT

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (339.646 KB) | DOI: 10.29122/mipi.v13i3.3746

Abstract

Minyak nabati murni (Pure Plant Oil / PPO) dari kelapa sawit dapat digunakan sebagai subtitusi bahan bakar solar pada mesin diesel. PPO dapat digunakan dengan mencampurkannya dengan solar, sehingga mengurangi penggunaan bahan bakar fosil yang tidak ramah lingkungan. Akan tetapi, bahan bakar campuran PPO juga memiliki sisi negatif seperti Specific Fuel Consumption (SFC) yang tinggi, viskositas tinggi, nilai kalor yang rendah, dan emisi NOx yang cenderung sedikit lebih tinggi. Dalam studi ini berbagai campuran PPO dan solar diuji di PLTD. Hasilnya menunjukkan bahwa PPO sebaiknya digunakan dengan campuran solar dan proses pre-heating dilakukan sebelum masuk ke mesin. Penggunaan PPO juga teruji sebagai bahan bakar yang ramah lingkungan, kandungan sulfur yang rendah, serta menghasilkan emisi gas rumah kaca yang rendah. Agar PPO dapat digunakan pada mesin diesel, maka perlu beberapa perubahan seperti modifikasi mesin seperti pre-heating PPO, modifikasi sistem injektor, dual fuelling, dan blending PPO dengan solar. Kata kunci : biofuel, PPO, kelapa sawit, PLTD, performa mesin diesel
OPTIMASI PROSES PRODUKSI BIODIESEL DARI MINYAK KELAPA SAWIT DAN JARAK PAGAR DENGAN MENGGUNAKAN KATALIS HETEROGEN KALSIUM OKSIDA Murti, Galuh Wirama; Rahmawati, Nurdiah; Heriyanti, Septina Is; Hastuti, Zulaicha Dwi
Jurnal Energi dan Lingkungan (Enerlink) Vol 11, No 2 (2015)
Publisher : Badan Pengkajian dan Penerapan Teknologi

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (969.231 KB) | DOI: 10.29122/elk.v11i2.1582

Abstract

Production of biodiesel has been conducted through several processes such as esterification andtransesterification by homogeneous catalyst in which use either acidic or alkaline substances.Homogeneous catalysts have some negative impacts to the environment, because technically itrequires further treatment process such as washing. Therefore, the use of heterogeneouscatalysts is proposed to be best way to overcome this problem. The advantages of heterogeneouscatalysts are not only for its ease in recovery but also for its reusability. Moreover, it isenvironmentally friendly and cheap which only undergo a single process of transesterification.Calcium oxide is well-known as one of heterogeneous catalysts. It were activated by pretreatmentwith methanol and then it was continued by transesterification reaction. The optimal reactiono conditions were obtained at temperature 60 C, atmospheric pressure, and 4 h reaction time.Calcium oxides shows good activity in transesterification reaction using either palm or jatropha oil.The highest conversion of palm oil is approximately 62,51% within catalyst 3% by weight oil,whereas jatropha oil is approximately 53.10 % within catalyst 10% by weight oil. The regeneratedcatalyst shows low catalytic activity which is indicated by small presence of methyl ester in theproduct.Key words : biodiesel, heterogen catalyst, calcium oxide, palm oil, jatropha oil
Effects of CaO addition into CuO/ZnO/Al2O3 catalyst on hydrogen production through water gas shift reaction Hastuti, Zulaicha Dwi; Rosyadi, Erlan; Anindita, Hana Nabila; Masfuri, Imron; Rahmawati, Nurdiah; Rini, Tyas Puspita; Anggoro, Trisno; Prabowo, Wargiantoro; Saputro, Frendy Rian; Syafrinaldy, Ade
International Journal of Renewable Energy Development Vol 13, No 4 (2024): July 2024
Publisher : Center of Biomass & Renewable Energy (CBIORE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.61435/ijred.2024.59257

Abstract

Hydrogen is a promising renewable energy carrier and eco-friendly alternative to fossil fuels. Water-gas-shift reaction (WGSR) is commonly used to generate hydrogen from renewable biomass feedstocks. Enriching hydrogen content in synthesis gas (syngas) production can be made possible by applying the WGSR after gasification. WGSR can achieve a maximal carbon monoxide (CO) conversion using a commercially patented CZA (Cu/ZnO/Al2O3) catalyst. This study proposed three in-lab self-synthesized CZA catalysts to be evaluated and compared with the patented catalyst performance-wise. The three catalysts were prepared with co-precipitation of different Cu:Zn:Al molar ratios: CZA-431 (4:3:1), CZA-531 (5:3:1) and CZA-631 (6:3:1). The catalysts characteristics were determined through X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) analysis and Scanning Electron Microscopy (SEM) techniques. CO gas was mixed with steam in a catalytic reactor with a 3:1 molar ratio, running continuously through the catalyst at 250 °C for 30 mins. All three catalysts, however, performed below expectations, where CZA-431 had a CO conversion of 77.44%, CZA-531 48.75%, and CZA-631 71.67%. CaO, as a co-catalyst, improved the performance by stabilizing the gas composition faster. The CO conversion of each catalyst also improved: CZA-431 improved its CO conversion to 97.39%, CZA-531 to 96.71%, and CZA-631 to 95.41%. The downward trend of the CO conversion was deemed to be caused by copper content found in CZA-531 and CZA-631 but not in CZA-431, which tended to form a Cu-Zn metal complex, weakening the catalyst's activity.