Claim Missing Document
Check
Articles

Found 6 Documents
Search

EVALUASI PLT BIOGAS TERANTAM COVERED LAGOON (CAL) 700 KW UNTUK PENGEMBANGAN PLT BIOGAS TIPE CSTR Rosyadi, Erlan; Rahmawati, Nurdiah; Pertiwi, Astri; Murti, Galuh Wirama; Fauzan, Naazi; Rini, Tyas Puspita; Muharto, Bambang; Bhaskara, Arya; Saputra, Hens
Majalah Ilmiah Pengkajian Industri Vol 13, No 3 (2019): Majalah Ilmiah Pengkajian Industri
Publisher : BPPT

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (772.901 KB) | DOI: 10.29122/mipi.v13i3.3844

Abstract

Production of Crude Palm Oil (CPO) is increasing from year to year and is predicted to reach 41.6 million tons per year in 2018. Each ton of CPO will produce 3,28 m3 of POME during the production process. Improper handling of POME, besides causing soil pollution and flying, will release methane gas that categorized as GHG. BPPT cooperate  with PTPN V utilized POME to produce biogas and then be converted into electricity in a Biogas Power Plant (PLTBg) in Terantam with a design capacity of 700 kW. The reactor used is a closed Anaerobic Lagoon (CAL) reactor equipped with a recirculation pump. From the evaluations, the technology chosen was not optimal from the operation, its evaluaed from the accumulation of cakes and sludge collected in the reactor which could be disturb during an anaerobic reaction. The next technology development will be carried out with the development of PLTBg in Sei Pagar using CSTR technology. At the same reactor capacity, CSTR has a faster HRT compared to CAL. CSTR is also easier in control of pH and temperature, also requires less land.Keyword : POME, Biogas, CSTR, Covered Lagoon, HRT, OLR
OPTIMASI PROSES PRODUKSI BIODIESEL DARI MINYAK KELAPA SAWIT DAN JARAK PAGAR DENGAN MENGGUNAKAN KATALIS HETEROGEN KALSIUM OKSIDA Murti, Galuh Wirama; Rahmawati, Nurdiah; Heriyanti, Septina Is; Hastuti, Zulaicha Dwi
Jurnal Energi dan Lingkungan (Enerlink) Vol 11, No 2 (2015)
Publisher : Badan Pengkajian dan Penerapan Teknologi

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (969.231 KB) | DOI: 10.29122/elk.v11i2.1582

Abstract

Production of biodiesel has been conducted through several processes such as esterification andtransesterification by homogeneous catalyst in which use either acidic or alkaline substances.Homogeneous catalysts have some negative impacts to the environment, because technically itrequires further treatment process such as washing. Therefore, the use of heterogeneouscatalysts is proposed to be best way to overcome this problem. The advantages of heterogeneouscatalysts are not only for its ease in recovery but also for its reusability. Moreover, it isenvironmentally friendly and cheap which only undergo a single process of transesterification.Calcium oxide is well-known as one of heterogeneous catalysts. It were activated by pretreatmentwith methanol and then it was continued by transesterification reaction. The optimal reactiono conditions were obtained at temperature 60 C, atmospheric pressure, and 4 h reaction time.Calcium oxides shows good activity in transesterification reaction using either palm or jatropha oil.The highest conversion of palm oil is approximately 62,51% within catalyst 3% by weight oil,whereas jatropha oil is approximately 53.10 % within catalyst 10% by weight oil. The regeneratedcatalyst shows low catalytic activity which is indicated by small presence of methyl ester in theproduct.Key words : biodiesel, heterogen catalyst, calcium oxide, palm oil, jatropha oil
APPLICATION OF TEMPERATURE CONTROL SYSTEMS AT THE CATALYST ACTIVATION STEP IN THE METHANOL TESTPLANT Adiprabowo, Arya Bhaskara; Pertiwi, Astri; Rahmawati, Nurdiah; Saputro, Frendy Rian; Valentino, Novio; Anindita, Hana Nabila; Septriana, Desy
Majalah Ilmiah Pengkajian Industri Vol. 15 No. 1 (2021): Majalah Ilmiah Pengkajian Industri
Publisher : Deputi TIRBR-BPPT

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Catalyst activation is an important step in methanol synthesis process, achieved by the reduction of CuO precursor producing Cu0 active sites.  Testplant’s temperature operation shall be maintainted at 220°C in order to maximize the CuO reduction process in the catalyst activation step. A temperature control system shall be applied in methanol testplant to maintain the temperature during reduction process, due to sensitivity of reduction process to temperature variation and possibility of disturbance such as change in gas flow rate which could affects the operating temperature. Temperature control systems are tested by using step response at the desired setpoint, which is 220°C at pre-heater and reactor and 60°C at sampling line. The tests are conducted by changing the setpoint value at temperature controller and previously stable flow gas in the system (disturbance rejection). The temperature control system proved to be able to response well during the test. In the end, methanol is produced from syngas, indicating catalyst activation success. Keywords: Catalyst Activation; Methanol Testplant; Temperature Controller
Effect of Temperature and Steam-to-Carbon Monoxide (CO) Ratio on Hydrogen Production in Water-Gas Shift Reaction using Cu-ZnO-Al2O3 Catalyst Desi, Sekar Kumala; Nursa'adah, Restu Siti; Anindita, Hana Nabila; Muharto, Bambang; Rahmawati, Nurdiah; Rini, Tyas Puspita; Rosyadi, Erlan
Makara Journal of Science Vol. 27, No. 4
Publisher : UI Scholars Hub

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

This study investigates the effect of steam-to-CO molar ratio and temperature on hydrogen production in a water gas shift reaction using a Cu-ZnO-Al2O3 catalyst. Herein, different steam-to-CO molar ratios (1:1, 2:1, and 3:1) and temperatures (200 °C, 250 °C, and 300 °C) were applied to investigate their impact on the reaction and H2 production. The Cu-ZnO-Al2O3 catalyst was characterized by its surface area, pore size distribution, and chemical composition. Moreover, the experimental setup enabled the control of temperature and steam-to-CO molar ratio while monitoring the product gas composition. The results revealed a considerable influence of temperature and steam-to-CO molar ratio on CO conversion efficiency. Notably, the majority of the experiment variations exhibited CO conversion exceeding 90% within 1 min throughout the reaction. Additionally, the highest H2 composition of 53.10% was reached at 250 °C with the steam-to-CO molar ratio of 3:1.
Effects of CaO addition into CuO/ZnO/Al2O3 catalyst on hydrogen production through water gas shift reaction Hastuti, Zulaicha Dwi; Rosyadi, Erlan; Anindita, Hana Nabila; Masfuri, Imron; Rahmawati, Nurdiah; Rini, Tyas Puspita; Anggoro, Trisno; Prabowo, Wargiantoro; Saputro, Frendy Rian; Syafrinaldy, Ade
International Journal of Renewable Energy Development Vol 13, No 4 (2024): July 2024
Publisher : Center of Biomass & Renewable Energy (CBIORE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.61435/ijred.2024.59257

Abstract

Hydrogen is a promising renewable energy carrier and eco-friendly alternative to fossil fuels. Water-gas-shift reaction (WGSR) is commonly used to generate hydrogen from renewable biomass feedstocks. Enriching hydrogen content in synthesis gas (syngas) production can be made possible by applying the WGSR after gasification. WGSR can achieve a maximal carbon monoxide (CO) conversion using a commercially patented CZA (Cu/ZnO/Al2O3) catalyst. This study proposed three in-lab self-synthesized CZA catalysts to be evaluated and compared with the patented catalyst performance-wise. The three catalysts were prepared with co-precipitation of different Cu:Zn:Al molar ratios: CZA-431 (4:3:1), CZA-531 (5:3:1) and CZA-631 (6:3:1). The catalysts characteristics were determined through X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) analysis and Scanning Electron Microscopy (SEM) techniques. CO gas was mixed with steam in a catalytic reactor with a 3:1 molar ratio, running continuously through the catalyst at 250 °C for 30 mins. All three catalysts, however, performed below expectations, where CZA-431 had a CO conversion of 77.44%, CZA-531 48.75%, and CZA-631 71.67%. CaO, as a co-catalyst, improved the performance by stabilizing the gas composition faster. The CO conversion of each catalyst also improved: CZA-431 improved its CO conversion to 97.39%, CZA-531 to 96.71%, and CZA-631 to 95.41%. The downward trend of the CO conversion was deemed to be caused by copper content found in CZA-531 and CZA-631 but not in CZA-431, which tended to form a Cu-Zn metal complex, weakening the catalyst's activity.
KOH Activated-Biochar from Oil Palm Solid Wastes Via Pyrolysis for Energy Storage Application Murti, Galuh Wirama; Rahmawati, Nurdiah; Valentino, Novio; Hikmat, Hikmat; Firmandoko, Bagus Alif; Dwiratna, Bralin; Bangun, Herson; Prasetyo, Joni
Jurnal Ilmiah Teknik Kimia Vol. 8 No. 1 (2024): JURNAL ILMIAH TEKNIK KIMIA
Publisher : Program Studi Teknik Kimia, Universitas Pamulang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32493/jitk.v8i1.37710

Abstract

As the leading exporter of the oil palm in the world, Indonesia has an environmental issue regarding to the increasing oil palm solid wastes. In order to utilize this lignocellulosic wastes into an inexpensive supply of carbon-based material, biochar from empty fruit bunch (EFB), palm kernel shell (PKS), oil palm frond (OPF), and oil palm trunk (OPT) was produced via slow pyrolysis with KOH as activation agent. The slow pyrolysis was conducted with a temperature of 600oC, a heating rate of 10oC/min, held for 30 min, and atmospheric pressure. This study examines the physico-chemical characterization of all oil palm solid wastes and biochars by using ultimate analysis, water and ash content, Fourier Transform Infrared (FTIR) spectrometer, surface area using Brunauer-Emmet-Teller (BET), and surface morphology using Scanning Electron Microscope (SEM). The higher biochar yields were obtained by PKS and EFB with 30% and 35.79% which have a higher ash content, lignin content, and residual solid char. OPT and PKS biochars exhibit high surface area (467.49 m2/g and 386.85 m2/g) with a high carbon content of 75.64% and 70.22%, respectively. Electrochemical performances of OPT and PKS biochar were also evaluated and the cyclic voltammogram showed the response of current to potential. The results of OPT and PKS biochars had shown a promising raw materials as bio-carbon black which have a well-developed structure of morphology, high surface area, and high carbon content.