Claim Missing Document
Check
Articles

Found 7 Documents
Search

ULASAN TEKNOLOGI PRETREATMENT TERKINI LIMBAH CAIR POME SEBAGAI UMPAN DIGESTER BIOGAS Murti, Galuh Wirama; Pertiwi, Astri; Masfuri, Imron; Juwita, Asmi Rima; Adiprabowo, Arya Bhaskara; Dwimansyah, Ridho; Senda, Semuel Pati; Prasetyo, Dwi Husodo
JTERA (Jurnal Teknologi Rekayasa) Vol 4, No 1: June 2019
Publisher : Politeknik Sukabumi

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (958.298 KB) | DOI: 10.31544/jtera.v4.i1.2019.17-28

Abstract

Pengolahan anaerob merupakan teknologi efektif yang murah untuk mengolah limbah cair kelapa sawit (POME) menjadi biogas yang dapat dijadikan bahan bakar atau listrik. Yield biogas dapat ditingkatkan dengan menerapkan teknik pretreatment limbah POME sebelum menuju digester. Umumnya, teknik pretreatment ini adalah tahapan hidrolisis yang merupakan tahap pertama dari produksi biogas. Tujuan dari pretreatment ini untuk memecah padatan atau gumpalan komponen agar lebih mudah dicerna oleh bakteri. Studi ini berisi ulasan perbandingan keunggulan dan kelemahan beberapa metode pretreatment terkini termasuk dengan evaluasi biaya operasional yang sesuai untuk diaplikasikan pada pengolahan pretreatment limbah POME di PKS Sei Pagar. Berdasarkan hasil seleksi, teknik pretreatment dengan karakteristik limbah POME yang memiliki biaya operasional relatif rendah yaitu teknik ultrasonik dan ozonasi.
EFEK INJEKSI UDARA DAN STEAM TERHADAP KUALITAS SYNGAS HASIL GASIFIKASI SEKAM PADI MENGGUNAKAN FIXED–BED GASIFIER Masfuri, Imron; Rahardjo, Bambang Suwondo
Jurnal Energi dan Lingkungan (Enerlink) Vol 5, No 2 (2009)
Publisher : Badan Pengkajian dan Penerapan Teknologi

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (737.142 KB) | DOI: 10.29122/elk.v5i2.1571

Abstract

Biomass gasification is more benefit compared to direct combustion because ofmore flexibility gas product that can be directed use as combusted gas in gasengine power generation or chemical feedstocks as well as synthetic fuelbelongs to added market value. Since 2007, PT National Champignon (PTNatcham) in Wonosobo ? Central Java have been operating 1 (one) unit of fixed?bed updraft gasifier by rice?husk fuel feeding using air as gasification agent forit?s mushroom plant electricity needs through gas engine 400 kW. Fluctuation ofgasifictaion temperature in each of gasifier zones is affected by injectionpressures of air+steam, as well as opening valves of air and steam. The optimumsteam injection can only be carried?out at opening valve of steam 50% and airof 7/19 (volumetric ratio of steam/air = 0.6?0.7) with bottom temperatur ofgasifier, Tbottom = 650oC at pressure condition of 4,5 bar. Syngas with H2/COratio of 1,26? 1,71 have sufficient met the requirements of syngas quality forsynthesis process of Fischer?Tropsch to be processed futhermore for syntheticfuel producing.Kata kunci: sekam padi, gasifikasi, gas sintetis, Gas?To?Liquid, Fischer?Tropsch
Simulasi Homogenitas Pencampuran Air Limbah Pabrik Kelapa Sawit dan Pengaruhnya Terhadap Pengolahan Awal di Kolam Ekualisasi Pilot Plant Biogas Sei Pagar Masfuri, Imron; Soleh, Soleh; Pertiwi, Astri; Muharto, Bambang; Priambodo, Trisaksono Bagus
Jurnal Teknologi Lingkungan Vol. 21 No. 2 (2020)
Publisher : Center for Environmental Technology - Agency for Assessment and Application of Technology

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1580.325 KB) | DOI: 10.29122/jtl.v21i2.3902

Abstract

ABSTRACTPalm oil mill effluent (POME) produced from palm oil mills is classified as waste that can pollute the environment and needs severe treatment because it still contains high BOD and COD. POME has the potential to be further processed to produce biogas products through the anaerobic digestion process. Anaerobic process of biogas production from Palm Oil Mill Effluent (POME) waste is a fermentation process which quite a long time. So it is necessary to have a POME pretreatment process for preparation before being fed into the biodigester reactor. It is aimed at considering optimum conditioning, good homogeneity, and preparing for the formation of gas products. One of the POME pretreatment steps was carried out in an equalization tank to be homogenized before entering the reactor. However, when passing the equalization process, there are indications of sedimentation or separation between liquid waste and dissolved solids. Thus, an attempt was made to carry out a stirring system so that homogeneity would occur with the agitator. Therefore, the POME conditions in all parts of the pond could be relatively similar. The stirring is one of the factors that influence microbial life. In this research, a stirrer design simulation will be conducted to determine the effectiveness of the stirrer and homogeneity of POME in equalization pond. Design is adjusted to the actual POME parameters according to results of the analysis carried out related to POME physical properties such as temperature, density, viscosity, pH, and flow rate. Conditions analyzed in the simulation are agitator speed, the direction of fluid flow, power consumption, and homogeneity of mixing.Keywords: agitator, mixing, equalization tank, homogeneity, POMEABSTRAKLimbah cair pabrik kelapa sawit (POME) yang dihasilkan dari pabrik pengolahan sawit tergolong limbah yang dapat mencemari lingkungan dan perlu penanganan serius, karena masih mengandung BOD dan COD tinggi. POME sangat berpotensi untuk diolah lebih lanjut untuk menghasilkan produk biogas melalui proses penguraian anaerob. Proses pengolahan air limbah pabrik minyak sawit menjadi biogas merupakan proses fermentasi anaerobik yang memerlukan waktu yang lama. Oleh karena itu, perlu adanya proses pengolahan awal POME untuk penyiapan sebelum diumpankan ke dalam reaktor biodigester untuk pengkondisian yang optimum, homogenitas yang baik, dan persiapan pembentukan produk gas. Salah satu pengolahan awal POME dilakukan di kolam ekualisasi untuk proses homogenisasi air limbah sebelum masuk ke dalam reaktor. Selama melewati kolam ekualisasi, ada indikasi terjadi pengendapan atau pemisahan antara limbah cair dengan padatan terlarut. Untuk itu, muncul upaya untuk melakukan sistem pengadukan agar tercapai kondisi homogen dengan menggunakan pengaduk agar kondisi POME di seluruh bagian kolam relatif sama. Adapun pengadukan merupakan salah satu faktor yang berpengaruh pada kehidupan mikroba. Pada penelitian ini akan dilakukan simulasi desain pengaduk yang untuk mengetahui efektivitas pengaduk dan homogenitas POME di dalam kolam equalisasi. Desain disesuaikan dengan parameter POME sesuai hasil analisis yang dilakukan terkait properti fisik POME seperti temperatur, densitas, viskositas, pH, dan laju alir. Kondisi yang dianalisis dalam simulasi adalah kecepatan putaran pengaduk, arah aliran fluida, konsumsi daya dan homogenitas pencampuran.Kata kunci: pengaduk, pencampuran, kolam ekualisasi, homogenitas, POME
THE EFFECT OF DIMETHYL ETHER (DME) AS LPG SUBSTITUTION ON HOUSEHOLD STOVE: MIXTURE STABILITY, STOVE EFFICIENCY, FUEL CONSUMPTION, AND MATERIALS TESTING Murti, Galuh Wirama; Priyanto, Unggul; Masfuri, Imron; Adelia, Nesha
Majalah Ilmiah Pengkajian Industri Vol. 15 No. 2 (2021): Majalah Ilmiah Pengkajian Industri
Publisher : Deputi TIRBR-BPPT

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

DME has characteristics similar to LPG so that the storage and handling are not so different from LPG. DME could be used as a solvent that can extract typical types of rubber/polymer material. The aims and objectives of this study are to determine the effect of DME/LPG (100/0, 80/20, 50/50, 30/70, 20/80) on the stability of the DME/LPG mixture on the stove and also to observe the effect on several rubber materials/polymers on stove accessories. The study reveals that the usage of a DME/LPG mixture between 20/80 - 30/70 does not require a replacement of any substitute materials but only requires minor modifications to the stove. However, at a higher DME composition, the use of the fuel needs to replace the seal that is resistant to DME. It occurs due to the change of the gas composition when it is used.
Pyrolysis process control: temperature control design and application for optimum process operation Muharto, Bambang; Saputro, Frendy Rian; Prabowo, Wargiantoro; Anggoro, Trisno; Adiprabowo, Arya Bhaskara; Masfuri, Imron; Irawan, Bagus Bhakti
International Journal of Electrical and Computer Engineering (IJECE) Vol 14, No 2: April 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v14i2.pp1473-1485

Abstract

Fast pyrolysis in auger reactor gains attention for efficient bio-oil production. Due to the quick nature of the process, precise temperature control using the proportional-integral-derivative (PID) algorithm is paramount. This study harnesses various PID tuning approaches through modelling and experimental validation to optimize continuous and precise pyrolysis temperature. System identification was done to investigate the process dynamic with fit accuracy above 93% and design a suitable PID control. Comparison with the experiment data shows a favorable result with rise time and settling time match above 75%. Ziegler-Nichols (ZN) and Cohen-Coon (CC) tuning methods were implemented in the system with undistinguished results, yielding steady-state error (SSE) below 1% and settling time around 4,300 to 4,800 seconds. The heuristic fine-tuning method improved the rise time and settling time by stabilizing before 3,600 seconds. Furthermore, the robustness of PID controllers was verified with a disturbance rejection test, keeping the SSE deviation inside the boundary of 2%. Finally, the setup could support maximum pyrolytic oil production by 69.6% at 500 °C. The result implies that the PID controller could provide a stable and rugged response to support a productive and sustainable pyrolysis plant operation.
Effects of CaO addition into CuO/ZnO/Al2O3 catalyst on hydrogen production through water gas shift reaction Hastuti, Zulaicha Dwi; Rosyadi, Erlan; Anindita, Hana Nabila; Masfuri, Imron; Rahmawati, Nurdiah; Rini, Tyas Puspita; Anggoro, Trisno; Prabowo, Wargiantoro; Saputro, Frendy Rian; Syafrinaldy, Ade
International Journal of Renewable Energy Development Vol 13, No 4 (2024): July 2024
Publisher : Center of Biomass & Renewable Energy (CBIORE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.61435/ijred.2024.59257

Abstract

Hydrogen is a promising renewable energy carrier and eco-friendly alternative to fossil fuels. Water-gas-shift reaction (WGSR) is commonly used to generate hydrogen from renewable biomass feedstocks. Enriching hydrogen content in synthesis gas (syngas) production can be made possible by applying the WGSR after gasification. WGSR can achieve a maximal carbon monoxide (CO) conversion using a commercially patented CZA (Cu/ZnO/Al2O3) catalyst. This study proposed three in-lab self-synthesized CZA catalysts to be evaluated and compared with the patented catalyst performance-wise. The three catalysts were prepared with co-precipitation of different Cu:Zn:Al molar ratios: CZA-431 (4:3:1), CZA-531 (5:3:1) and CZA-631 (6:3:1). The catalysts characteristics were determined through X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) analysis and Scanning Electron Microscopy (SEM) techniques. CO gas was mixed with steam in a catalytic reactor with a 3:1 molar ratio, running continuously through the catalyst at 250 °C for 30 mins. All three catalysts, however, performed below expectations, where CZA-431 had a CO conversion of 77.44%, CZA-531 48.75%, and CZA-631 71.67%. CaO, as a co-catalyst, improved the performance by stabilizing the gas composition faster. The CO conversion of each catalyst also improved: CZA-431 improved its CO conversion to 97.39%, CZA-531 to 96.71%, and CZA-631 to 95.41%. The downward trend of the CO conversion was deemed to be caused by copper content found in CZA-531 and CZA-631 but not in CZA-431, which tended to form a Cu-Zn metal complex, weakening the catalyst's activity.
Synergistic co-pyrolysis of Gracilaria waste and waste tires: Enhancing bio-oil quality through thermal and chemical bond optimization Masfuri, Imron; Mohamad, Shaza Eva; Sugeng, Dhani Avianto; Amdrullah, Apip; Yahya, Wira Jazair
International Journal of Renewable Energy Development Vol 14, No 5 (2025): September 2025
Publisher : Center of Biomass & Renewable Energy (CBIORE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.61435/ijred.2025.61202

Abstract

The increasing demand for renewable energy and sustainable waste management has prompted research into innovative conversion technologies. This study explored the co-pyrolysis of Gracilaria waste (GW) and waste tires (WT) as a potential approach to improving bio-oil quality by enhancing its hydrocarbon content and reducing oxygenated compounds. The novelty of this study lay in providing new mechanistic insights into the co-pyrolysis process by systematically analyzing the thermal degradation behavior and chemical bond evolution of GW-WT mixtures using a combination of TGA, FTIR, and GC-MS techniques. This detailed chemical transformation analysis differentiated the study from prior research that primarily focused on product yields. The study analyzed the thermal degradation behavior and chemical bond transformation of GW and WT mixtures during pyrolysis, hypothesizing that the addition of WT to GW would enhance the hydrocarbon profile and thermal stability of the resulting bio-oil. Thermogravimetric analysis (TGA) was employed to evaluate the decomposition behavior of five different GW-WT blend ratios under an inert atmosphere, while Fourier Transform Infrared Spectrosco py (FTIR) was used to assess chemical functional group evolution in both raw materials and pyrolytic products. The results revealed that GW pyrolysis exhibited a single weight loss peak (100–350°C) with a total weight loss of 40%, while WT pyrolysis followed a two-stage decomposition process (200–500°C) with a total weight loss of 65%. The GW-WT mixture resulted in a total weight loss of approximately 60%, indicating a synergistic effect between the two feedstocks. FTIR analysis confirmed a reduction in hydroxyl (-OH) groups and an increase in hydrocarbon-related bonds (C=C, C-C, and C-H), demonstrating improved bio-oil composition. These findings suggested that incorporating waste tires into Gracilaria pyrolysis enhanced bio-oil quality and hydrocarbon content, offering a promising approach for biomass valorization and sustainable energy production. Future research should explore process optimization through catalyst integration and scale-up potential for industrial applications.