Claim Missing Document
Check
Articles

Found 5 Documents
Search

EVALUASI PLT BIOGAS TERANTAM COVERED LAGOON (CAL) 700 KW UNTUK PENGEMBANGAN PLT BIOGAS TIPE CSTR Rosyadi, Erlan; Rahmawati, Nurdiah; Pertiwi, Astri; Murti, Galuh Wirama; Fauzan, Naazi; Rini, Tyas Puspita; Muharto, Bambang; Bhaskara, Arya; Saputra, Hens
Majalah Ilmiah Pengkajian Industri Vol 13, No 3 (2019): Majalah Ilmiah Pengkajian Industri
Publisher : BPPT

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (772.901 KB) | DOI: 10.29122/mipi.v13i3.3844

Abstract

Production of Crude Palm Oil (CPO) is increasing from year to year and is predicted to reach 41.6 million tons per year in 2018. Each ton of CPO will produce 3,28 m3 of POME during the production process. Improper handling of POME, besides causing soil pollution and flying, will release methane gas that categorized as GHG. BPPT cooperate  with PTPN V utilized POME to produce biogas and then be converted into electricity in a Biogas Power Plant (PLTBg) in Terantam with a design capacity of 700 kW. The reactor used is a closed Anaerobic Lagoon (CAL) reactor equipped with a recirculation pump. From the evaluations, the technology chosen was not optimal from the operation, its evaluaed from the accumulation of cakes and sludge collected in the reactor which could be disturb during an anaerobic reaction. The next technology development will be carried out with the development of PLTBg in Sei Pagar using CSTR technology. At the same reactor capacity, CSTR has a faster HRT compared to CAL. CSTR is also easier in control of pH and temperature, also requires less land.Keyword : POME, Biogas, CSTR, Covered Lagoon, HRT, OLR
APPLICATION OF INSTRUMENTATION AND CONTROL SYSTEM FOR BIOGAS POWER GENERATION COMMISSIONING AT PTPN V KAMPAR PALM OIL MILL Salehah, Nur Azimah; Prasetyo, Dwi Husodo; Senda, Semuel Pati; Supriyadi, Muhamad Rodhi; Adeliaa, Nesha; Samodra, Bayu; Adiprabowo, Arya Bhaskara; Muharto, Bambang; Anindita, Hana Nabila
Majalah Ilmiah Pengkajian Industri Vol 14, No 1 (2020): Majalah Ilmiah Pengkajian Industri
Publisher : BPPT

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29122/mipi.v14i1.3865

Abstract

Biogas Power Plant (PLT) from palm oil mill effluent had been commissioned by a team from the Center of Technology for the Energy Resources and Chemical Industry, Agency for the Assessment and Application of Technology (PTSEIK-BPPT). The biogas power plant is located in PTPN V Kampar, Riau Province. A PLC (Programmable Logic Controller) has been implemented to support the operation of biogas power plant. Proper sensor selection has been done for each measurement applications. A computer and mimic panel is used as an interface for the operation of PLC. The master control system communicates with the slave control systems and Human Machine Interface (HMI) by means of ethernet communication protocol. Commissioning phase is carried out for 2 hours with a load of 450 kW. Instrumentation and control system is able to measure important variables such as fluctuation in methane numbers, pressures, and biogas flow rate to check the suitability of biogas supply in accordance to gas engine specification.
Simulasi Homogenitas Pencampuran Air Limbah Pabrik Kelapa Sawit dan Pengaruhnya Terhadap Pengolahan Awal di Kolam Ekualisasi Pilot Plant Biogas Sei Pagar Masfuri, Imron; Soleh, Soleh; Pertiwi, Astri; Muharto, Bambang; Priambodo, Trisaksono Bagus
Jurnal Teknologi Lingkungan Vol. 21 No. 2 (2020)
Publisher : Center for Environmental Technology - Agency for Assessment and Application of Technology

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1580.325 KB) | DOI: 10.29122/jtl.v21i2.3902

Abstract

ABSTRACTPalm oil mill effluent (POME) produced from palm oil mills is classified as waste that can pollute the environment and needs severe treatment because it still contains high BOD and COD. POME has the potential to be further processed to produce biogas products through the anaerobic digestion process. Anaerobic process of biogas production from Palm Oil Mill Effluent (POME) waste is a fermentation process which quite a long time. So it is necessary to have a POME pretreatment process for preparation before being fed into the biodigester reactor. It is aimed at considering optimum conditioning, good homogeneity, and preparing for the formation of gas products. One of the POME pretreatment steps was carried out in an equalization tank to be homogenized before entering the reactor. However, when passing the equalization process, there are indications of sedimentation or separation between liquid waste and dissolved solids. Thus, an attempt was made to carry out a stirring system so that homogeneity would occur with the agitator. Therefore, the POME conditions in all parts of the pond could be relatively similar. The stirring is one of the factors that influence microbial life. In this research, a stirrer design simulation will be conducted to determine the effectiveness of the stirrer and homogeneity of POME in equalization pond. Design is adjusted to the actual POME parameters according to results of the analysis carried out related to POME physical properties such as temperature, density, viscosity, pH, and flow rate. Conditions analyzed in the simulation are agitator speed, the direction of fluid flow, power consumption, and homogeneity of mixing.Keywords: agitator, mixing, equalization tank, homogeneity, POMEABSTRAKLimbah cair pabrik kelapa sawit (POME) yang dihasilkan dari pabrik pengolahan sawit tergolong limbah yang dapat mencemari lingkungan dan perlu penanganan serius, karena masih mengandung BOD dan COD tinggi. POME sangat berpotensi untuk diolah lebih lanjut untuk menghasilkan produk biogas melalui proses penguraian anaerob. Proses pengolahan air limbah pabrik minyak sawit menjadi biogas merupakan proses fermentasi anaerobik yang memerlukan waktu yang lama. Oleh karena itu, perlu adanya proses pengolahan awal POME untuk penyiapan sebelum diumpankan ke dalam reaktor biodigester untuk pengkondisian yang optimum, homogenitas yang baik, dan persiapan pembentukan produk gas. Salah satu pengolahan awal POME dilakukan di kolam ekualisasi untuk proses homogenisasi air limbah sebelum masuk ke dalam reaktor. Selama melewati kolam ekualisasi, ada indikasi terjadi pengendapan atau pemisahan antara limbah cair dengan padatan terlarut. Untuk itu, muncul upaya untuk melakukan sistem pengadukan agar tercapai kondisi homogen dengan menggunakan pengaduk agar kondisi POME di seluruh bagian kolam relatif sama. Adapun pengadukan merupakan salah satu faktor yang berpengaruh pada kehidupan mikroba. Pada penelitian ini akan dilakukan simulasi desain pengaduk yang untuk mengetahui efektivitas pengaduk dan homogenitas POME di dalam kolam equalisasi. Desain disesuaikan dengan parameter POME sesuai hasil analisis yang dilakukan terkait properti fisik POME seperti temperatur, densitas, viskositas, pH, dan laju alir. Kondisi yang dianalisis dalam simulasi adalah kecepatan putaran pengaduk, arah aliran fluida, konsumsi daya dan homogenitas pencampuran.Kata kunci: pengaduk, pencampuran, kolam ekualisasi, homogenitas, POME
Effect of Temperature and Steam-to-Carbon Monoxide (CO) Ratio on Hydrogen Production in Water-Gas Shift Reaction using Cu-ZnO-Al2O3 Catalyst Desi, Sekar Kumala; Nursa'adah, Restu Siti; Anindita, Hana Nabila; Muharto, Bambang; Rahmawati, Nurdiah; Rini, Tyas Puspita; Rosyadi, Erlan
Makara Journal of Science Vol. 27, No. 4
Publisher : UI Scholars Hub

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

This study investigates the effect of steam-to-CO molar ratio and temperature on hydrogen production in a water gas shift reaction using a Cu-ZnO-Al2O3 catalyst. Herein, different steam-to-CO molar ratios (1:1, 2:1, and 3:1) and temperatures (200 °C, 250 °C, and 300 °C) were applied to investigate their impact on the reaction and H2 production. The Cu-ZnO-Al2O3 catalyst was characterized by its surface area, pore size distribution, and chemical composition. Moreover, the experimental setup enabled the control of temperature and steam-to-CO molar ratio while monitoring the product gas composition. The results revealed a considerable influence of temperature and steam-to-CO molar ratio on CO conversion efficiency. Notably, the majority of the experiment variations exhibited CO conversion exceeding 90% within 1 min throughout the reaction. Additionally, the highest H2 composition of 53.10% was reached at 250 °C with the steam-to-CO molar ratio of 3:1.
Pyrolysis process control: temperature control design and application for optimum process operation Muharto, Bambang; Saputro, Frendy Rian; Prabowo, Wargiantoro; Anggoro, Trisno; Adiprabowo, Arya Bhaskara; Masfuri, Imron; Irawan, Bagus Bhakti
International Journal of Electrical and Computer Engineering (IJECE) Vol 14, No 2: April 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v14i2.pp1473-1485

Abstract

Fast pyrolysis in auger reactor gains attention for efficient bio-oil production. Due to the quick nature of the process, precise temperature control using the proportional-integral-derivative (PID) algorithm is paramount. This study harnesses various PID tuning approaches through modelling and experimental validation to optimize continuous and precise pyrolysis temperature. System identification was done to investigate the process dynamic with fit accuracy above 93% and design a suitable PID control. Comparison with the experiment data shows a favorable result with rise time and settling time match above 75%. Ziegler-Nichols (ZN) and Cohen-Coon (CC) tuning methods were implemented in the system with undistinguished results, yielding steady-state error (SSE) below 1% and settling time around 4,300 to 4,800 seconds. The heuristic fine-tuning method improved the rise time and settling time by stabilizing before 3,600 seconds. Furthermore, the robustness of PID controllers was verified with a disturbance rejection test, keeping the SSE deviation inside the boundary of 2%. Finally, the setup could support maximum pyrolytic oil production by 69.6% at 500 °C. The result implies that the PID controller could provide a stable and rugged response to support a productive and sustainable pyrolysis plant operation.