Claim Missing Document
Check
Articles

Found 4 Documents
Search

ANALYSIS OF THE PENETRATION CAPABILITY OF VISIBLE SPECTRUM WITH AN ATTENUATION COEFFICIENT THROUGH THE APPARENT OPTICAL PROPERTIES APPROACH IN THE DETERMINATION OF A BATHYMETRY ANALYTICAL MODEL Setiawan, Kuncoro Teguh; Winarso, Gathot; Nuha, Muhammad Ulin; Hartuti, Maryani; Ginting, Devica Natalia BR; Emiyati, .; Azis, Kholifatul; Kusuma, Fajar Bahari; Asriningrum, Wikanti
International Journal of Remote Sensing and Earth Sciences (IJReSES) Vol 18, No 2 (2021)
Publisher : National Institute of Aeronautics and Space of Indonesia (LAPAN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30536/j.ijreses.2021.v18.a3667

Abstract

The attenuation coefficient (Kd) can be extracted by an apparent optical properties(AOP) approach to determine marine shallow-water habitat bathymetry based on an analytical method. Such a method was employed in the Red Sea by Benny and Dawson in 1983 using Landsat MSS imagery. Therefore, we applied the Benny and Dawson algorithm to extract bathymetry in shallow marine waters off Karimunjawa Island, Jepara, Central Java, Indonesia. We used the SPOT 6 satellite, which has four multispectral bands with a spatial resolution of 6 meters. The results show that three bands of SPOT 6 data (the blue, green, and red bands) can produce bathymetric information up to 30.29, 24.63 and 18.58 meters depth respectively. The determinations of the attenuation coefficients of the three bands are 0.08069, 0.09330, and 0.39641. The overall accuracy of absolute bathymetry of the blue, green, and red bands is 61.12%, 65.73%, and 26.25% respectively, and the kappa coefficients are 0.45, 0.52, and 0.13.
Identifikasi Spesies Mangrove dengan menggunakan Metode Principal Component Analysis (PCA) pada Citra Landsat-8 di Taman Nasional Sembilang, Sumatera Selatan, Indonesia Ginting, Devica Natalia Br; Faristyawan, Rizky; Safitri, Siti Nurulita Mutiara; Winarso, Gathot
Jurnal Kelautan Tropis Vol 27, No 2 (2024): JURNAL KELAUTAN TROPIS
Publisher : Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/jkt.v27i2.22830

Abstract

Mangroves are coastal plants influenced by tidal cycles. One of the regions in South Sumatra Province with a mangrove ecosystem is Sembilang National Park. As a national park, this location is strategically positioned for research related to mangrove species. The utilization of the Principal Component Analysis (PCA) method is considered to enhance the capabilities of remote sensing data in mangrove mapping. However, its application has been limited to the mangrove level. The research objective is to identify mangrove species in Sembilang National Park using the PCA method by leveraging Landsat-8 image data acquired on September 9, 2019. Mangrove distribution is obtained through the Mangrove Vegetation Index (MVI) and vector data from Global Mangrove Watch. The image is then overlaid with field species data to obtain species spectral patterns. Additionally, the correlation between spectral band values and eigenvalues (PC) is analyzed to detect parameters correlated with eigenvalues. The research results show that PC values correlate with mangrove species and can be used for mangrove species identification. This is demonstrated by Bruguiera Gymnorrhiza species with canopy coverage of 60.8% and 62.46% at ST7 and ST8 having the same PC values, while mangroves with canopy coverage of 62.5% in different species have different PC values. Moreover, the PCA method can indicate two crucial factors in identifying mangrove species, namely vegetation and soil factors.  Mangrove merupakan tumbuhan pesisir yang dipengaruhi oleh pasang surut. Salah satu wilayah di Provinsi Sumatera Selatan yang memiliki ekosistem mangrove adalah Taman Nasional Sembilang. Sebagai taman nasional, lokasi ini sangat strategis untuk dilakukan penelitian terkait spesies mangrove. Pemanfaatan metode principal component analysis (PCA) dinilai mampu meningkatkan kemampuan data penginderaan jauh dalam pemetaan mangrove. Namun selama ini, pemanfaatan terbatas pada level mangrove. Adapun tujuan penelitian adalah mengidentifikasi spesies mangrove di Taman Nasional Sembilang menggunakan metode PCA dengan memanfaatkan data citra Landsat-8 yang diakusisi pada 09 September 2019. Sebaran mangrove diperoleh melalui indeks vegetasi mangrove (MVI) dan data vektor dari Global Mangrove Watch. Citra tersebut kemudian di overlay dengan data spesies lapangan untuk mendapatkan pola spektral species. Selain itu, korelasi nilai spektral band dan eigen (PC) dianalisis untuk mendeteksi parameter yang berkorelasi dengan nilai eigen. Hasil penelitian menunjukkan nilai PC memiliki korelasi dengan spesies mangrove dan dapat digunakan untuk mengidentifikasi spesies mangrove. Hal ini ditunjukkan spesies Bruguiera Gymnorrhiza dengan tutupan kanopi 60,8% dan 62,46% pada ST7 dan ST8 memiliki nilai PC yang sama serta mangrove dengan besaran tutupan kanopi 62,5% pada spesies nilai PC berbeda. Selain itu, metode PCA mampu menunjukkan dua faktor penting dalam mengidentifikasi spesies mangrove, yaitu faktor vegetasi dan tanah.
ANALISIS SPASIAL KESESUAIAN BUDIDAYA KERAPU BERBASIS DATA PENGINDERAAN JAUH (STUDI KASUS: PULAU AMBON MALUKU) Anggraini, Nanin; Adawiah, Syifa Wismayati; Ginting, Devica Natalia Br; Marpaung, Sartono
Jurnal Penginderaan Jauh dan Pengolahan Data Citra Digital Vol. 16 No. 2 (2019)
Publisher : Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30536/inderaja.v16i2.3358

Abstract

Indonesian waters have abundant marine aquaculture potential. This activity need to be maximized with remote sensing technology approach to determining locations that have the potential aquaculture areas. The research location is Ambon Island, Maluku Province. The method used for suitability site is Weighted Overlay Technique from biophysical parameters such as total suspended solids (TSS), sea surface temperature (SST), chlorophyll, and bathymetry. In addition, mangrove and coral reef data are used as a limiting factor for the suitability site. Based on the results of processing data, classes were quite suitable dominated in Piru Bay, Banguala Bay, and Ambon Bay; the appropriate classes were detected in Ambon Dalam Bay, and very suitable classes were detected in Piru Bay and Ambon Bay. The results of field measurement verification showed that the temperature of the image data with the insitu data correlated with the value of R2 0.74 and TSS image with insitu data shown R2 of 0.63.
KESESUAIAN WILAYAH BUDI DAYA IKAN KERAPU BERDASARKAN CITRA SATELIT LANDSAT-8 OPERATIONAL LAND IMAGER (OLI)/THERMAL INFRARED SENSOR (TIRS) (STUDI KASUS PERAIRAN KECAMATAN GEROKGAK, KABUPATEN BULELENG, PROVINSI BALI) Azizah, Febiana Nur; Afgatiani, Pingkan Mayestika; Adawiah, Syifa Wismayanti; Anggraini, Nanin; Ginting, Devica Natalia Br; Patwati, Ety; Asriningrum, Wikanti
Jurnal Penginderaan Jauh dan Pengolahan Data Citra Digital Vol. 18 No. 1 (2021)
Publisher : Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30536/inderaja.v18i1.3364

Abstract

he waters in Gerokgak District are one of the aquatic region in Indonesia that have potential as regional land for the development of aquaculture, one of which is grouper cultivation. To increase the potential of grouper cultivation, it is necessary to know the right location of grouper cultivation. This study applies a method using an overlay between oceanographic parameters, namely sea surface temperature (SST), salinity, chlorophyll, and Total Suspended Solid (TSS). In addition, this study also uses a remote sensing approach by utilizing Landsat-8 Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS) satellite imagery data. The results of this study indicate that the waters in the Teluk Penerusan, Gerokgak District, Bali have waters that are suitable for grouper cultivation. Based analysis result between the values of sea surface temperature and chlorophyll with in situ values, it shows good accuracy with values of R2 = 0,661; 0,686 for chlorophyll in situ, and 0,658 for TSS with in situ.