Claim Missing Document
Check
Articles

Found 8 Documents
Search

Implementasi Pengamanan File Rekam Medis Pada Puskesmas Perlayuan Ritonga, Aldi Rapandi; Irmayani, Deci; Ritonga, Ali Akbar
Sinkron : jurnal dan penelitian teknik informatika Vol. 6 No. 2 (2022): Articles Research Volume 6 Issue 2, April 2022
Publisher : Politeknik Ganesha Medan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33395/sinkron.v7i2.11391

Abstract

This study aims to provide an effort to secure files in order to maintain important documents as assets for the Perlayuan Health Center. The Perlayuan Health Center is one of the world's health units whose role is to support health and the security of medical record files. Important factual documents that have been recorded regarding the historical history of symptoms and diseases that have been recorded such as disease or illness conditions, prevention or healing techniques that have been carried out and have been missed have previously been documented by the Health service at the Perlayuan Health Center. Medical records have or keep important records that are documented with data in the form of patient identities, examinations, treatment, actions from the facilitators of the Perlayuan Health Center. Rivest's Cipher 6 method is used to lock files. The medical record aims to be an initial benchmark to continue the action plan for drugs and treatments that will be applied. File security with At the Perlayuan Health Center there is very little security for a file because each data is not only stored on one computer and if needed the file will be copied to anyone who asks for the file. That way the file is no longer guaranteed security and confidentiality. Anyone can easily retrieve files by copying formatted encryption or data encryption. Rivest's Cipher 6 algorithm can break 128 bits blocks into 4 sets of 32 bits and this algorithm can work with 4 32 bits registers X, B, Y and D.
Web-based Blood Donor Management Information Sytem using Waterfall Method Andriani, Reza Silvia; Irmayani, Deci; Ritonga, Ali Akbar
Sinkron : jurnal dan penelitian teknik informatika Vol. 6 No. 2 (2022): Articles Research Volume 6 Issue 2, April 2022
Publisher : Politeknik Ganesha Medan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33395/sinkron.v7i2.11423

Abstract

PMI Labuhanbatu Regency is one of the central PMI branches where there is a division that handles the blood donation process, namely the Blood Transfusion Unit. UTD PMI Labuhanbatu Regency has the duty to serve blood donation activities and provide blood stock for the Labuhanbatu community in need. As a unit that provides blood donors, UTD PMI Labuhanbatu must always be ready to provide the services needed. One of the concerns is the issue of blood stock availability. If there are many people who need blood, then UTD must be ready to serve. If the amount of blood stock is reduced, then people will find it difficult to get blood. For this reason, the issue of blood availability must always be the main concern of UTD PMI Labuhanbatu. This study aims to build a blood donor information system at the PMI Blood Transfusion Unit in Labuhanbatu Regency. The system built applies a web-based framework. The system development applies the Waterall method which includes the process of needs analysis, design, implementation, testing, and maintenance. After designing, implementing and testing, the results obtained are the system has been successfully developed and all designs are in accordance with what is implemented. The conclusion from this research is that the blood donor information system that has been developed at UTD PMI Labuhanbatu Regency has been able to provide convenience for admins and users in managing donor and blood stock management.
Seleksi Pinjaman Kredit Selama Pandemi Rekomendasi Metode MCDM-Promethee Trisno, Trisno; Nasution, Marnis; Ritonga, Ali Akbar
Jurnal Teknik Informatika UNIKA Santo Thomas Vol 6 No. 1 : Tahun 2021
Publisher : LPPM UNIKA Santo Thomas

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.54367/jtiust.v6i1.1281

Abstract

Dalam kondisi COVID-19 saat ini, banyak usaha menengah ke bawah seperti Usaha Mikro, Kecil, dan Menengah (UMKM) mengalami penurunan omset pendapatan, sehingga membutuhkan tambahan biaya modal untuk menjalankan kehidupan usahanya. Untuk memberikan pinjaman modal tambahan, ada beberapa persyaratan yang harus dipenuhi oleh setiap UMKM. Ibarat usaha mandiri yang dijalankan, apakah tetap atau hanya sebatas domisili, lalu berapa lama mereka memulai usaha yang mereka bangun sampai sekarang, apakah mereka memiliki agunan sebagai jaminan pinjaman, apakah mereka memiliki tingkat usaha yang baik. produktivitas selama berjalan, dilihat dari laporan yang dibuat, apakah Anda sudah memiliki banyak pelanggan dari bisnis yang Anda jalankan. Hal ini menjadi tolak ukur pemberian pinjaman kepada UMKM. Metode yang dapat direkomendasikan adalah Promethee, yang merupakan bagian dari konsep Multi-Criteria Decision Making (MCDM) sebagai metode pemeringkatan dalam menentukan masalah pinjaman yang direkomendasikan oleh metode Promethee. Hasil yang diperoleh dari pemeringkatan dengan metode Promethee yaitu dari enam UMKM yang dipilih dan dievaluasi, peringkat pertama adalah UMKM-3 dengan nilai bobot tertinggi 0,208, disusul UMKM-1 dengan bobot 0,042 dan disusul oleh UMKM-5 yang masih dianggap layak meskipun tidak bernilai. negatif, sedangkan dua UMKM lainnya belum dapat dikatakan layak untuk mendapatkan pinjaman yaitu UMKM-2 dan UMKM-4 karena negatif. peringkat pertama adalah dari UMKM-3 dengan nilai bobot tertinggi sebesar 0,208, disusul oleh UMKM-1 dengan bobot 0,042 dan disusul oleh UMKM-5 yang masih dianggap layak meskipun tidak bernilai. negatif, sedangkan dua UMKM lainnya belum dapat dikatakan layak untuk mendapatkan pinjaman yaitu UMKM-2 dan UMKM-4 karena negatif. peringkat pertama adalah dari UMKM-3 dengan nilai bobot tertinggi sebesar 0,208, disusul oleh UMKM-1 dengan bobot 0,042 dan disusul oleh UMKM-5 yang masih dianggap layak meskipun tidak bernilai. negatif, sedangkan dua UMKM lainnya belum dapat dikatakan layak untuk mendapatkan pinjaman yaitu UMKM-2 dan UMKM-4 karena negatif.
Seleksi Pinjaman Kredit Selama Pandemi Rekomendasi Metode MCDM-Promethee Trisno, Trisno; Nasution, Marnis; Ritonga, Ali Akbar
Jurnal Teknik Informatika UNIKA Santo Thomas Vol 6 No. 1 : Tahun 2021
Publisher : LPPM UNIKA Santo Thomas

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (385.7 KB) | DOI: 10.54367/jtiust.v6i1.1281

Abstract

Dalam kondisi COVID-19 saat ini, banyak usaha menengah ke bawah seperti Usaha Mikro, Kecil, dan Menengah (UMKM) mengalami penurunan omset pendapatan, sehingga membutuhkan tambahan biaya modal untuk menjalankan kehidupan usahanya. Untuk memberikan pinjaman modal tambahan, ada beberapa persyaratan yang harus dipenuhi oleh setiap UMKM. Ibarat usaha mandiri yang dijalankan, apakah tetap atau hanya sebatas domisili, lalu berapa lama mereka memulai usaha yang mereka bangun sampai sekarang, apakah mereka memiliki agunan sebagai jaminan pinjaman, apakah mereka memiliki tingkat usaha yang baik. produktivitas selama berjalan, dilihat dari laporan yang dibuat, apakah Anda sudah memiliki banyak pelanggan dari bisnis yang Anda jalankan. Hal ini menjadi tolak ukur pemberian pinjaman kepada UMKM. Metode yang dapat direkomendasikan adalah Promethee, yang merupakan bagian dari konsep Multi-Criteria Decision Making (MCDM) sebagai metode pemeringkatan dalam menentukan masalah pinjaman yang direkomendasikan oleh metode Promethee. Hasil yang diperoleh dari pemeringkatan dengan metode Promethee yaitu dari enam UMKM yang dipilih dan dievaluasi, peringkat pertama adalah UMKM-3 dengan nilai bobot tertinggi 0,208, disusul UMKM-1 dengan bobot 0,042 dan disusul oleh UMKM-5 yang masih dianggap layak meskipun tidak bernilai. negatif, sedangkan dua UMKM lainnya belum dapat dikatakan layak untuk mendapatkan pinjaman yaitu UMKM-2 dan UMKM-4 karena negatif. peringkat pertama adalah dari UMKM-3 dengan nilai bobot tertinggi sebesar 0,208, disusul oleh UMKM-1 dengan bobot 0,042 dan disusul oleh UMKM-5 yang masih dianggap layak meskipun tidak bernilai. negatif, sedangkan dua UMKM lainnya belum dapat dikatakan layak untuk mendapatkan pinjaman yaitu UMKM-2 dan UMKM-4 karena negatif. peringkat pertama adalah dari UMKM-3 dengan nilai bobot tertinggi sebesar 0,208, disusul oleh UMKM-1 dengan bobot 0,042 dan disusul oleh UMKM-5 yang masih dianggap layak meskipun tidak bernilai. negatif, sedangkan dua UMKM lainnya belum dapat dikatakan layak untuk mendapatkan pinjaman yaitu UMKM-2 dan UMKM-4 karena negatif.
Analisis Sentimen Ulasan Produk Suncreen Wardah Pada Marketplace Shopee Menggunakan Metode Naïve Bayes Rambe, Nurhayati; Harahap, Syaiful Zuhri; Ritonga, Ali Akbar; Bangun, Budianto
Journal of Computer Science and Information System(JCoInS) Vol 6, No 3: JCoInS | 2025
Publisher : Universitas Labuhanbatu

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36987/jcoins.v6i3.7992

Abstract

The development of the digital world and the popularity of online marketplaces such as Shopee have changed the way consumers interact and review products. Reviews of Wardah sunscreen products, which have an important role in skin health, are one of the most widely found. Understanding the sentiment of these reviews is crucial for manufacturers to improve product quality. Therefore, this study aims to analyze and classify consumer sentiment towards Wardah sunscreen products on Shopee. Using the Naïve Bayes classification method, the reviews will be categorized into positive, negative, and neutral sentiments to get an overall picture of the public perception of the product.
Penerapan Data Mining Untuk Memprediksi Prestasi Akademik Siswa SMKS IT Shah Hamidun Majid Menggunakan Algoritma Decision Tree Sahbana, Ahmad; Nasution, Fitri Aini; Ritonga, Ali Akbar; Suryadi, Sudi
Journal of Computer Science and Information System(JCoInS) Vol 6, No 3: JCoInS | 2025
Publisher : Universitas Labuhanbatu

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36987/jcoins.v6i3.7939

Abstract

Education is the main foundation in the development of superior human resources, especially in the digital era that demands the use of Information Technology. One of the main challenges is how schools are able to effectively manage and analyze academic data. Data mining comes as a solution in extracting hidden information from educational data so that it can support strategic decision making. This study focuses on the application of Decision Tree algorithm in predicting student academic achievement in SMKs It Shah Hamidun Majid. The Decision Tree algorithm was chosen because it is easy to understand and is able to provide accurate classification based on various variables, such as attendance, grades, and student background. By utilizing academic data for the 2023/2024 school year, this study is expected to produce predictive models that help schools identify factors that affect student achievement, provide personalized coaching recommendations, and support data-based policies. The results of this study are expected to be a real contribution in the development of academic information systems that are adaptive, inclusive, and oriented to improving the quality of education at the private vocational school level.
Predicting Prospective Student Interests Using the C4.5 Algorithm and Naive Bayes Ritonga, Ali Akbar; Amanda, Annisa; Hasibuan, Elysa Rohayani
Sinkron : jurnal dan penelitian teknik informatika Vol. 9 No. 1 (2025): Research Article, January 2025
Publisher : Politeknik Ganesha Medan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33395/sinkron.v9i1.14441

Abstract

Students are individuals pursuing higher education at a university with the goal of enhancing their knowledge, skills, and character to succeed in the professional world and contribute to society. The purpose of this study is to analyze the factors that influence prospective students' interest in continuing their education using the C4.5 Algorithm and the Naïve Bayes Method. The importance of understanding prospective students' interest patterns is expected to help universities formulate more effective strategies. The purpose of this study is to determine how well the two methods classify data and understand the factors that most influence prospective students' decisions. The C4.5 Algorithm is known to be effective in building decision trees that are easy to interpret, while the Naïve Bayes Method has the advantage of handling datasets with independent attributes. This study uses the stages of data selection, data pre-processing, algorithm application, and model evaluation. The classification results obtained from the C4.5 Algorithm show that 132 data are included in the interest category and 8 data are not interested, while the Naïve Bayes Method produces 131 data of interest and 9 data are not interested. In conclusion, both methods have good accuracy levels, but the Naïve Bayes Method shows superiority in Recall value, while the C4.5 Algorithm excels in interpretation of results and clarity of classification patterns.
Penentuan Siswa Berprestasi Menggunakan Metode Analytical Hierarchy Process (AHP) dengan Pembobotan Entropy dalam Sistem Pendukung Keputusan Sudarman, Dita Auliya; Irmayani, Deci; Masrizal, Masrizal; Ritonga, Ali Akbar
Building of Informatics, Technology and Science (BITS) Vol 7 No 1 (2025): June (2025)
Publisher : Forum Kerjasama Pendidikan Tinggi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47065/bits.v7i1.7393

Abstract

Determining outstanding students is one of the important aspects in the world of education to provide objective awards to students who have the best academic and non-academic achievements. This study aims to develop a decision support system (DSS) in determining outstanding students using the Analytical Hierarchy Process (AHP) method with Entropy weighting. The AHP method is used to determine the weight of the criteria based on pairwise comparisons, while the Entropy method is used to balance the weight based on data distribution. The results of the calculations in the system show that the alternative with the highest value is Habibi Altaqi (A18) with a value of 89,078, followed by Alif Alhafiz Syahputra (A25) and Sintya Azahra (A03) in second and third place. Conversely, the alternative with the lowest value is Eka (A10) with a value of 73,554, ranked 25th. The results of this study indicate that the AHP and Entropy methods are able to provide objective and systematic evaluations in the selection process of outstanding students. The system developed can be used as a tool for schools in making decisions more accurately and transparently. The contribution of this research is to provide an integrated approach between AHP and Entropy in a decision support system that can be adopted by other educational institutions to improve objectivity and accountability in the assessment process of high-achieving students.