Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : Malcom: Indonesian Journal of Machine Learning and Computer Science

Perbandingan Algoritma SVM dan Naïve Bayes dalam Analisis Sentimen Twitter pada Penggunaan Mobil Listrik di Indonesia : Comparison of Naive Bayes and SVM Algorithms in Twitter Sentiment Analysis on Electric Car Use in Indonesia Ningsih, Widia; Alfianda, Baginda; Rahmaddeni, Rahmaddeni; Wulandari, Denok
MALCOM: Indonesian Journal of Machine Learning and Computer Science Vol. 4 No. 2 (2024): MALCOM April 2024
Publisher : Institut Riset dan Publikasi Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.57152/malcom.v4i2.1253

Abstract

Analisis sentimen dapat mengklasifikasikan sentimen berdasarkan polaritas teks dalam sebuah frasa dan menentukannya sebagai sentimen positif, negatif, atau netral. Data sentimen ini diperoleh dari jejaring sosial Twitter berdasarkan kueri bahasa Indonesia. Tujuan dari penelitian ini adalah untuk memahami opini publik mengenai topik tertentu yang dikomunikasikan di Twitter dalam bahasa Indonesia dan untuk mendukung upaya melakukan riset pasar terhadap opini publik. Data yang dikumpulkan melalui proses pelabelan manual, preprocessing, dan pemodelan, dan model klasifikasi dibuat melalui proses pelatihan. Teknik pengumpulan data dilakukan dengan mencari catatan menggunakan istilah pencarian “kendaraan listrik” di website Kaggle.com. Algoritma yang digunakan untuk membangun model klasifikasi berdasarkan data yang diperoleh pada penelitian ini adalah Algoritma Naive Bayes dan Support Vector Machine. Nilai akurasi implementasi klasifikasi yang diperoleh algoritma Naive Bayes sebesar 63,02% dan akurasi support vector machine sebesar 70,82%. Dapat disimpulkan bahwa algoritma support vector machine mempunyai nilai akurasi yang paling tinggi.
Implementasi Algoritma Decision Tree untuk Rekomendasi Film dan Klasifikasi Rating pada Platform Netflix: Implementation of Decision Tree Algorithm for Movie Recommendation and Rating Classification on the Netflix Platform Mukhsinin, Dimas Aditya; Rafliansyah, M; Ibrahim, Sang Adji; Rahmaddeni, Rahmaddeni; Wulandari, Denok
MALCOM: Indonesian Journal of Machine Learning and Computer Science Vol. 4 No. 2 (2024): MALCOM April 2024
Publisher : Institut Riset dan Publikasi Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.57152/malcom.v4i2.1255

Abstract

Sebagai salah satu platform video streaming terbesar di dunia, Netflix telah berkembang pesat sejak pendiriannya pada tahun 1997, awalnya berfokus pada penyewaan DVD, namun kemudian beralih ke layanan streaming online pada tahun 2007. Dengan jutaan pelanggan global, Netflix terus berinovasi dengan paket langganan, produksi konten eksklusif, dan teknologi analisis data serta machine learning untuk meningkatkan pengalaman pengguna. Penelitian ini menerapkan algoritma Decision Tree untuk meningkatkan sistem rekomendasi dan klasifikasi rating di Netflix. Menggunakan dua dataset utama, movies_df dan ratings_df, penelitian melibatkan langkah-langkah pengumpulan dan penggabungan data, penentuan fitur dan variabel target, pembagian data, pelatihan model, serta evaluasi. Hasilnya mencakup evaluasi model Decision Tree dengan metrik akurasi, precision, recall, dan F1-score untuk setiap kategori rating, serta visualisasi grafik batang tentang jumlah rating film dan presentase rating dari 1-5. Rekomendasi film berdasarkan model Decision Tree juga disajikan, memberikan wawasan tentang peningkatan sistem rekomendasi di Netflix. Kesimpulan menunjukkan bahwa implementasi algoritma Decision Tree dapat meningkatkan akurasi rekomendasi film dan klasifikasi rating di Netflix, berkontribusi pada pengalaman pengguna yang lebih personal di era layanan streaming online.