Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : Automotive Experiences

Experimental Investigation of Using Thermoelectric Coolers under Different Cooling Methods as An Alternative Air Conditioning System for Car Cabin Sukarno, Ragil; Premono, Agung; Gunawan, Yohanes; Wiyono, Apri; Lubi, Ahmad
Automotive Experiences Vol 7 No 2 (2024)
Publisher : Automotive Laboratory of Universitas Muhammadiyah Magelang in collaboration with Association of Indonesian Vocational Educators (AIVE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31603/ae.11485

Abstract

The cabin car temperature will increase when parked in direct sunlight, so the energy required to cool cabin space by the air conditioner will be higher. This study aims to investigate using a thermoelectric cooling system as an alternative to a chiller system to supply cold air to the car cabin under different cooling methods for parked cars. Experimental testing of thermoelectric cooling systems was conducted to produce cold air that can be applied to car cabins as an alternative to conventional air conditioners. The thermoelectric cooling system was varied with single and double TEC modules. The double TEC modules are arranged in a series of electrical and parallel thermal arrangements. A cooling water block using a mixture of water and ethylene glycol with variations of 0.4 lpm, 0.5 lpm, and 0.6 lpm was added to the hot side of the thermoelectric module. The result shows that the thermoelectric cooling system can work properly during the 2-hour test, which constantly supplies air to the cabin space between 20-25 °C, depending on the configuration of the cooling system. The highest COP of 0.84 was obtained when using the double TEC with heatsink and added 0.5 lpm water cooling system, while the lowest COP of 0.53 was obtained when using the single TEC module without a cooling water block.
Distillation, Characterizations, and Testing of Distillation Products from Waste Lubricant Oil (WLO) using Compression-Ignition Engine Priyanto, Sugeng; Lubi, Ahmad; Susetyo, Ferry Budhi; Krisyono, Danar Hari; Yudanto, Sigit Dwi; Rohman, Fakhrony Sholahudin; Sudibyo, Sudibyo
Automotive Experiences Vol 7 No 3 (2024)
Publisher : Automotive Laboratory of Universitas Muhammadiyah Magelang in collaboration with Association of Indonesian Vocational Educators (AIVE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31603/ae.11497

Abstract

Waste lubricant oil is always found in motor vehicle repair shops. Utilizing waste lubricant oil by distilling it will provide benefits. For this reason, waste lubricant oil was distilled in this research. Several characterizations were conducted to determine the viscosity, density, low heat value (LHV), and flash point of waste lubricant oil and distillation products. The distillation product is less viscous, denser, LHV, and flash point than lubricant oil waste. The distillation product was mixed with Pertamina DEX (0, 5, 10, and 15 vol.%) and then filled into the fuel tank for the engine performance test. The present experiment utilized a compression-ignition (CI) engine to measure performance. CI engine speed variations were carried out at 1000, 1500, 2000, and 2500 to see the influence of the mixed fuel on torque, power, specific fuel consumption (SFC), thermal efficiency, and smoke opacity. The increase in CI engine speed leads to an increase in torque, power, thermal efficiency, and smoke opacity, but at the same time, SFC decreases to 2500 rpm. Increasing the distillation product content in the mixed fuel decreased torque, power, SFC, thermal efficiency, and increased smoke opacity.