Claim Missing Document
Check
Articles

Found 25 Documents
Search

Meningkatkan Pemahaman Siswa SMA Don Bosco 3 Cikarang Mengenai Internet Sehat, Gamifikasi Dan Pergaulan Lawan Jenis di Era Digital Rosalina, Rosalina; Sahuri, Genta; Mandala, Rila; Fahmi, Hasanul
Jurnal Pengabdian Masyarakat Nusantara (JPMN) Vol. 3 No. 2 (2023): Agustus 2023 - Januari 2024
Publisher : Lembaga Otonom Lembaga Informasi dan Riset Indonesia (KITA INFO dan RISET)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35870/jpmn.v3i2.1679

Abstract

In today's digital age, high school students have to survive a dynamic and interconnected online environment. Promoting responsible digital citizenship and cultivating pleasant contacts, particularly those with the opposite sex, is critical as kids develop both intellectually and socially. The goal of this activity is to: (1) educate high school students about the responsible and ethical use of the internet, emphasizing the importance of online safety, privacy, and respect for others; (2) encourage students to develop healthy internet usage habits by providing them with the knowledge and tools to navigate the digital world responsibly; and (3) use gamification principles to engage and motivate high school students to adopt responsible online behavior. The activity was held at SMA Don Bosco 3 Cikarang and was attended by students as well as teachers.
Artificial intelligence multilingual image-to-speech for accessibility and text recognition Rosalina, Rosalina; Fahmi, Hasanul; Sahuri, Genta
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 14, No 3: June 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v14.i3.pp1743-1751

Abstract

The primary challenge for visually impaired and illiterate individuals is accessing and understanding visual content, which hinders their ability to navigate environments and engage with text-based information. This research addresses this problem by implementing an artificial intelligence (AI)-powered multilingual image-to-speech technology that converts text from images into audio descriptions. The system combines optical character recognition (OCR) and text-to-speech (TTS) synthesis, using natural language processing (NLP) and digital signal processing (DSP) to generate spoken outputs in various languages. Tested for accuracy, the system demonstrated high precision, recall, and an average accuracy rate of 0.976, proving its effectiveness in real-world applications. This technology enhances accessibility, significantly improving the quality of life for visually impaired individuals and offering scalable solutions for illiterate populations. The results also provide insights for refining OCR accuracy and expanding multilingual support.
Crowdfunding platform integrated with cryptocurrency payment support Rosalina, Rosalina; Sahuri, Genta
International Journal of Advances in Applied Sciences Vol 14, No 2: June 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijaas.v14.i2.pp598-608

Abstract

Crowdfunding platforms often face challenges such as high transaction fees, limited global accessibility, and reliance on traditional banking systems, which restrict participation and efficiency. These limitations hinder the full potential of crowdfunding, particularly for global contributors and projects. This research addresses these issues by proposing the development of a mobile crowdfunding platform integrated with cryptocurrency payment support. By incorporating cryptocurrency, the platform aims to reduce transaction costs, remove geographical barriers, and enhance transaction security through blockchain technology. The platform is built using a cross-platform mobile framework to ensure broad accessibility while integrating cryptocurrency gateways for decentralized financial transactions. This allows for real-time, secure, and low-cost payments, offering a transparent and efficient process for both contributors and fundraisers. Additionally, the platform's design supports scalability to accommodate various cryptocurrencies and an expanding user base. The findings demonstrate that cryptocurrency payment integration significantly improves transaction speed, reduces fees, and enhances security compared to traditional payment methods. It also fosters global participation, increasing engagement in crowdfunding initiatives.
MIDI-based generative neural networks with variational autoencoders for innovative music creation Rosalina, Rosalina; Sahuri, Genta
International Journal of Advances in Applied Sciences Vol 13, No 2: June 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijaas.v13.i2.pp360-370

Abstract

By utilizing variational autoencoder (VAE) architectures in musical instrument digital interface (MIDI)-based generative neural networks (GNNs), this study explores the field of creative music composition. The study evaluates the success of VAEs in generating musical compositions that exhibit both structural integrity and a resemblance to authentic music. Despite achieving convergence in the latent space, the degree of convergence falls slightly short of initial expectations. This prompts an exploration of contributing factors, with a particular focus on the influence of training data variation. The study acknowledges the optimal performance of VAEs when exposed to diverse training data, emphasizing the importance of sufficient intermediate data between extreme ends. The intricacies of latent space dimensions also come under scrutiny, with challenges arising in creating a smaller latent space due to the complexities of representing data in N dimensions. The neural network tends to position data further apart, and incorporating additional information necessitates exponentially more data. Despite the suboptimal parameters employed in the creation and training process, the study concludes that they are sufficient to yield commendable results, showcasing the promising potential of MIDI-based GNNs with VAEs in pushing the boundaries of innovative music composition.
Generating intelligent agent behaviors in multi-agent game AI using deep reinforcement learning algorithm Rosalina, Rosalina; Sengkey, Axel; Sahuri, Genta; Mandala, Rila
International Journal of Advances in Applied Sciences Vol 12, No 4: December 2023
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijaas.v12.i4.pp396-404

Abstract

The utilization of games in training the reinforcement learning (RL) agent is to describe the complex and high-dimensional real-world data. By utilizing games, RL researchers will be able to evade high experimental costs in training an agent to do intelligence tasks. The objective of this research is to generate intelligent agent behaviors in multi-agent game artificial intelligence (AI) using deep reinforcement learning (DRL) algorithm. A basic RL algorithm called deep Q network is chosen to be implemented. The agent is trained by the environment's raw pixel images and the action list information. The experiments conducted by using this algorithm show the agent’s decision-making ability in choosing a favorable action. In the default setting for the algorithm, the training is set into 1 epoch and 0.0025 learning rate. The number of training iterations is set to one as the training function will be repeatedly called for every 4-timestep. However, the author also experimented with two different scenarios in training the agent and compared the results. The experimental findings demonstrate that our agents learn correctly and successfully while actively participating in the game in real time. Additionally, our agent can quickly adjust against a different enemy on a varied map because of the observed knowledge from prior training.