Claim Missing Document
Check
Articles

Found 14 Documents
Search

Perbandingan Klasifikasi Antara KNN dan Naive Bayes pada Penentuan Status Gunung Berapi dengan K-Fold Cross Validation Tempola, Firman; Muhammad, Miftah; Khairan, Amal
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 5 No 5: Oktober 2018
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (679.097 KB) | DOI: 10.25126/jtiik.201855983

Abstract

Penelitian ini akan membandingkan dua algoritma klasifikasi yaitu K-Nearest Neighbour dan Naive Bayes Classifier pada data-data aktivitas status gunung berapi yang ada di Indonesia. Sedangkan untuk validasi data menggunakan k-fold cross validation. Dalam penentuan status gunung berapi pusat vulkanologi dan mitigasi bencana geologi melakukan dengan dua hal yaitu pengamatan visual dan faktor kegempaan. Pada penelitian ini dalam melakukan klasifikasi aktivitas gunung berapi menggunakan faktor kegempaan. Ada 5 kriteria yang digunakan dalam melakukan klasifikasi yaitu empat faktor kegempaan diantaranya gempa vulkanik dangkal, gempa tektonik jauh, gempa vulkanik dalam, gempa hembusan dan ditambah satu kriteria yaitu status sebelumnya. Ada 3 status yang di yang diklasifikasi yaitu normal, waspada dan siaga. Hasil penelitian yang dibagi kedalam 3 fold disetiap metode klasifikasi didapat perbandingan akurasi sistem rata-rata tertinggi pada k-nn 63,68 % dengan standar deviasi 7,47 %. Sedangkan dengan menggunakan naive bayes didapat rata-rata akurasi sebesar 79,71 % dengan standar deviasi 3,55 %. Selain itu, penggunaan naive bayes jaraknya akurasi lebih dekat dibandingan dengan k-nn. AbstractThis research will compare two classification algorithms that are K-Nearest Neighbors and Naive Bayes Classifier on data of volcanic status activity in Indonesia. While for data validation use k-fold cross validation. In determining the status of volcanology center volcanology and geological disaster mitigation to do with two things: visual observation and seismic factors. In this research in doing the classification of volcanic activity using earthquake factor. There are 5 criteria used in the classification of four seismic factors such as shallow volcanic earthquakes, distant tectonic earthquakes, volcanic earthquakes in the earthquake, blast and plus one criterion that is the previous status. There are 3 statuses in which are classified ie normal, alert and alert. The results of the study are divided into 3 fold in each classification method obtained comparison of the highest average system accuracy at 63.68% k-nn with a standard deviation of 7.47%. While using naive bayes obtained an average accuracy of 79.71% with a standard deviation of 3.55%. In addition, the use of naive bayes is closer to the accuracy of k-nn.
Penggunaan Internet Dikalangan Siswa SD di Kota Ternate: Suatu Survey, Penerapan Algoritma Clustering dan Validasi DBI Tempola, Firman; Muhammad, Miftah; Mubarak, Abdul
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 7 No 6: Desember 2020
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25126/jtiik.2020722370

Abstract

Penggunaan internet dimasyarakat global terus tumbuh, tak hanya terjadi pada masyarakat dewasa melainkan juga pada anak-anak. Internet tidak hanya berdampak pada hal positif melainkan juga pada hal negatif. Di Ternate penggunaan internet terus tumbuh hal ini karena semakin mudah dalam mengakses internet. Namun laporan secara ilmiah mengenai penggunaan internet di Kota Ternate belum ada. untuk itu, bagaimana mengetahui penggunaan internet dikalangan anak SD di kota Ternate. Penelitian itu bertujuan untuk mencari tahu penggunaan internet di Kota Ternate dengan cara  survey secara langsung kepada kalangan anak SD di kota Ternate. Selain itu, data-data dari hasil survey kemudian di cluster dengan menggunakan algoritma k-means clustering. kemudian dilakukan validasi clustering dengan davies bouldin index. Hasil dari penelitian ini dari 933 responden diperoleh 51,45 % siswa SD di kota Ternate aktif di jejaring sosial dengan 53,70% di whatsapp, 40,30% di instagram dan 27,80% di facebook. Untuk aktivitas ketika membuka youtube terdapat 61,60% sering menonton video di youtube dengan 61,60% video karton, komedi 49,80% dan konten edukasi 28,40%. Sedangkan untuk game online, yang aktif dalam bermain game online yaitu 49,41%. Untuk penerapan algoritma clustering k-means pada 32 sekolah SD di Kota Ternate diperoleh cluster terbaik saat pembagian 4 cluster, hal ini berdasarkan nilai davies bouldin index yang diperoleh sebesar 0,773 lebih kecil dibandingkan dengan pembagian cluster lainnya. AbstractThe use of the internet in the global community continues to grow, not only in adults but also in children. The internet does not only have positive effects but also negative things. In Ternate the use of the internet continues to grow because it is easier to access the internet. However, scientific reports regarding the use of the internet in the city of Ternate do not yet exist. for that, how to find out the use of the internet among elementary school children in the city of Ternate. The research aims to find out the use of the internet in the city of Ternate by means of a direct survey among elementary school children in the city of Ternate. In addition, the data from the survey results are then clustered using the k-means clustering algorithm. Then the clustering validation was performed with the bouldin index davies. The results of this study of 933 respondents obtained 51.45% of elementary school students in Ternate were active in social networks with 53.70% on whatsapp, 40.30% on Instagram and 27.80% on Facebook. For activities when opening YouTube there are 61.60% often watching videos on YouTube with 61.60% cardboard videos, comedy 49.80% and educational content 28.40%. As for online games, those active in playing online games are 49.41%. For the application of the k-means clustering algorithm in 32 elementary schools in Ternate, the best cluster was obtained when the division of 4 clusters, this was based on the bouldin index davies value obtained by 0.773 smaller than the other cluster divisions.
Analisis Kualitas Website Universitas Khairun Menggunakan System Usability Scale (Sus) Muhammad, Miftah; Hizbullah, Imam; Mabud, Zulaihah
Journal of Science and Engineering Vol 7, No 2 (2024): Journal of Science and Engineering (JOSAE)
Publisher : Fakultas Teknik Universitas Khairun

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33387/josae.v7i2.9391

Abstract

Abstract This study analyzes the quality of the Khairun University website (unkhair.ac.id) using the System Usability Scale (SUS) method. SUS is an evaluation method consisting of 10 statements that assess effectiveness, efficiency, and user satisfaction. Data were collected by distributing questionnaires to 200 respondents who were students from 10 faculties at Khairun University. The results showed an average SUS score of 64.3, which places the quality of the website at grade "D" or based on the Acceptability range is in the "Marginal Low" range with an "OK" assessment in the adjective rating assessment. Analysis of the distribution of respondents' answers indicates that although most users find the website easy to use, there are aspects that require more attention, especially in design and navigation. Recommendations for improvement include increasing design consistency, simplifying the usage process, and adding documentation and user guides. The results of this study are expected to be a reference for improving the user experience and usability of the Khairun University website.
1-BIT FULL ADDER VIRTUAL TRAINER FOR ELECTRICAL ENGINEERING EDUCATION Muhammad, Miftah; Dharmawan, Dharmawan; Suparman, Suparman
Journal of Science and Engineering Vol 8, No 2 (2025): Journal of Science and Engineering (Josae)
Publisher : Fakultas Teknik Universitas Khairun

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33387/josae.v%vi%i.10967

Abstract

The increasing complexity of digital logic design and the rapid evolution of remote learning environments have highlighted the need for innovative educational tools in electrical engineering. Traditional laboratory-based methods, while effective for hands-on learning, often face challenges related to cost, accessibility, and infrastructure limitations, which restrict student engagement and practice opportunities. In response, virtual learning platforms have emerged as cost-effective alternatives that bridge the gap between theoretical knowledge and practical application. This study presents the development of a 1-bit Full Adder Virtual Trainer designed to enhance conceptual understanding and practical skill acquisition in digital logic courses. The system integrates interactive simulation, real-time logic evaluation, and visual feedback to facilitate the comprehension of fundamental circuit behavior. By enabling students to experiment with input variables and observe logical operations dynamically, the trainer supports a more engaging and flexible learning experience. The proposed tool aims to strengthen the link between theory and practice in electrical engineering education, providing an accessible, efficient, and scalable approach to digital electronics learning.