Claim Missing Document
Check
Articles

Found 6 Documents
Search

Persamaan Relasi Fuzzy Dan Aplikasinya Pada Proses Diagnosis Penyakit Muhammd Abdy; Fardinah; Meryta Febrilian Fatimah
Journal of Mathematics: Theory and Applications Volume 1, Nomor 2, 2019
Publisher : Program Studi Matematika Universitas Sulawesi Barat

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (234.79 KB) | DOI: 10.31605/jomta.v1i2.697

Abstract

Relasi pada himpunan biasa merepresentasikan adanya keterkaitan diantara elemen-elemen dalam pasangan terurut dari dua himpunan. Derajat keterkaitan dari hubungan antara elemen dalam pasangan terurut tersebut diukur oleh fungsi karakteristik , yaitu fungsi yang memetakan setiap pasangan terurut kedalam himpunan . Fungsi karakteristik tersebut dapat diperluas sehingga akan memetakan setiap pasangan terurut ke dalam interval [0,1]. Fungsi yang diperluas ini disebut fungsi keanggotaan dan relasinya disebut sebagai relasi fuzzy. Relasi fuzzy dalam ruang perkalian yang sama dapat dikombinasikan antara satu dengan yang lain. Kombinasi relasi fuzzy yang akan dibahas dalam tulisan ini adalah komposisi max-min. komposisi tersebut dapat diinterpretasikan sebagai indikasi kekuatan suatu hubungan yang dinyatakan oleh derajat keanggotaan hubungan tersebut. Representasi dari kekuatan ini akan dipakai dalam aplikasi pada proses diagnose penyakit, yaitu menentukan hubungan antara gejala dan penyakit, antara pasien dan penyakit, dan antara pasien dan gejala.
ANALISIS MODEL MATEMATIKA SEITR PADA PENYAKIT CACAR AIR Musarifa; Hikmah; Fardinah
Journal of Mathematics: Theory and Applications Volume 3, Nomor 2, 2021
Publisher : Program Studi Matematika Universitas Sulawesi Barat

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (359.917 KB) | DOI: 10.31605/jomta.v3i2.1372

Abstract

Chickenpox is an infectious disease caused by the varicella zoster virus. This infectious disease generally occurs not only in children but also attack adults and the nature of its transmission is so capidly. The purpose of this research is to build a model and analyze the SEITR (Susceptible-Exposed-Infected-Treatment-Recovered) mathematical model. The results obtained from the SEITR model have two equilibrium points, namely disease-free and endemic. Model analysis was performed using the Routh-Horwitz criteria to identify the eigenvalues. Based on the results of the stability analysis that the disease-free equilibrium point were stable if the condition for the relationship between parameters were met. At the end of the study,on the simulation that has been carried out it is found that this disease will when is 0,58 and this disease will be epidemic when is 2,80.
ANALISIS MODEL MATEMATIKA PENYEBARAN PENYAKIT ISPA Nurfadilah; Hikmah; Fardinah
Journal of Mathematics: Theory and Applications Volume 3, Nomor 1, 2021
Publisher : Program Studi Matematika Universitas Sulawesi Barat

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (248.85 KB) | DOI: 10.31605/jomta.v3i1.1373

Abstract

Acute Respiratory Infection (ARI) is an infectious disease caused by bacteria and an unhealthy environment. The number of sufferers of this disease tends to increase and expand. The purpose of this study was to construct a mathematical model of the SEHAR epidemic (Suspectible-Exposed-Infected-Asthma-Recovered), analyze the stability of the equilibrium point and simulate the model. The results obtained are the SEHAR mathematical model for the spread of ARI disease which produces a disease-free equilibrium point and an endemic equilibrium point from the model. The method used is the stability analysis of the model using the Routh-Hurwitz Criteria to identify the characteristics of the eigenvalues. From the results of the stability analysis, it is found that the disease-free equilibrium point Eo and the endemic equilibrium point E1 are stable if the conditions for the relationship between parameters are met. At the end of the study, a simulation model was given using the Maple application
Model Predator-Prey Leslie-Gower dengan Fungsi Respon Sokol-Howell dan Perilaku Anti Predator Fardinah; Ekawati, Darma; Hikmah, Hikmah; Rachman, Hirman
Journal of Mathematics: Theory and Applications Vol 6 No 1 (2024): Volume 6, Nomor 1, 2024
Publisher : Program Studi Matematika Universitas Sulawesi Barat

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31605/jomta.v6i1.2971

Abstract

This study discusses the Leslie-Gower predator-prey model with the Sokol-Howell response function and anti-predator behavior. It is assumed that prey has anti-predator behavior that aims to reduce the risk of predation and not as an attempt by prey to find food. This study aims to formulate a Leslie-Gower predator-prey model with the Sokol-Howell response function and anti-predator behavior, analyze the model's equilibrium point and model interpretation. Stability analysis was carried out using the linearization method. The type of stability is determined based on the characteristic eigenvalues ​​obtained using Routh-Hurwitz criteria. The results of the analysis of the equilibrium point show that prey populations will exist and predators will become extinct if the anti-predator coefficient is greater than the intrinsic growth coefficient of predators, while prey and predator populations will always exist if the intrinsic growth coefficient of predators is greater than the anti-predator coefficient and fulfills other conditions required. Based on the numerical simulations performed, the interpretation is that an enlarged anti-predator coefficient increases the number of prey populations until they approach the carrying capacity, while predator populations decrease significantly and over time experience extinction.
MODEL EPIDEMI SEIEDR PERILAKU KECANDUAN DRAMA KOREA Nurul Fadhilah; Hikmah; Fardinah
Jurnal MSA (Matematika dan Statistika serta Aplikasinya) Vol 10 No 2 (2022): VOLUME 10 NOMOR 2 TAHUN 2022
Publisher : Universitas Islam Negeri Alauddin Makassar

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24252/msa.v10i2.33122

Abstract

Korean Wave atau hiburan dan budaya Korea semakin menjamur dari tahun ke tahun hingga ke berbagai negara, salah satunya adalah tayangan drama Korea sehingga banyak terjadi fenomena seseorang memiliki perilaku kecanduan drama Korea. Tujuan dari penelitian ini adalah membangun model matematika suatu fenomena sosial yaitu menonton drama Korea secara berlebihan yang menimbulkan perilaku kecanduan, dengan menggunakan model epidemi SEIEdR (Susceptible – Exposed – Infected – Education – Recovered), menganalisis model, dan menginterpretasikan simulasi model matematika dengan software maple. Metode yang digunakan untuk menganalisis kestabilan model yaitu berdasarkan karakteristik nilai eigen dengan menggunakan kriteria Routh-Hurwitz. Berdasarkan hasil penelitian diperoleh bilangan reproduksi dasar dan 2 titik kesetimbangan yaitu titik kesetimbangan bebas penyakit dan titik kesetimbangan endemik. Titik kesetimbangan bebas penyakit akan stabil asimtotik lokal apabila dan titik kesetimbangan endemik akan stabil lokal apabila . Simulasi model dilakukan dengan menggunakan program maple yang menunjukkan bahwa tidak akan terjadi endemik dan penyakit akan menghilang seiring berjalannya waktu jika memenuhi hubungan parameter yang disyaratkan.
Tingkat Pengangguran Terbuka Periode Sebelum hingga Sesudah Pandemi Covid-19 dengan Pendekatan Non-Parametrik Mayapada, Retno; Fardinah
ESTIMATOR : Journal of Applied Statistics, Mathematics, and Data Science Vol. 2 No. 1 (2024)
Publisher : Program Studi Statistika Universitas PGRI Argopuro Jember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31537/estimator.v2i1.1829

Abstract

The unemployment rate is one of the factors related to a country's economy. During the COVID-19 pandemic, there was a decline in economic growth in Indonesia which also had a negative impact on the labor market. The decreased mobility of people causes reduced economic activity and ultimately the number of poverty increases. This research compares the percentage of unemployment rates in Indonesia in the period before, during, and after the COVID-19 pandemic using a non-parametric approach because the data of unemployment rates in 2020 and 2021 are not normally distributed. The non-parametric tests used in this research are the Friedman test and the Nemenyi post-hoc test. Based on research conducted, it was found that there was a statistically significant difference (?=5%) between the percentage of unemployment rates during the COVID-19 pandemic and the period before and after the COVID-19 pandemic. Meanwhile, the difference between before and after COVID-19 occurred was not statistically significant (?=5%). However, the average unemployment rate in 2023 is the smallest that compared to previous years. This shows that the economy in Indonesia is slowly starting to improve after the COVID-19 pandemic.