Claim Missing Document
Check
Articles

Found 2 Documents
Search

Examining Building Engineering Education Students' Reading and Listening Skills Using the EF Standard English Test Rahayu, Diana; Iswardhany, Rieske
Jurnal Pendidikan Teknik Bangunan Vol 5, No 1 (2025): Jurnal Pendidikan Teknik Bangunan
Publisher : Universitas Pendidikan Indonesia (UPI)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17509/jptb.v5i1.87061

Abstract

In facing the era of globalization where the demand for foreign language proficiency is increasing, learning foreign languages, especially English, becomes very important. Because of this, Universitas Pendidikan Indonesia (UPI) requires students who will register for the graduation thesis defense to attach an English proficiency certificate. Considering that the main focus of the curriculum in the Building Engineering Education program is not English, it is necessary to analyze their English proficiency level before taking the English course. The method used is an online test through the EF SET website, the results of which will then be converted into CEFR categories consisting of seven levels of English proficiency. Based on the analysis results, the English proficiency levels of class A and class B students in terms of listening and reading comprehension are assessed to be in the upper beginner category. In the reading comprehension aspect, class A students fall into the intermediate category with a percentage of 30.8%, while the beginner and elementary categories each receive less than 30%, with the remainder in the upper intermediate and advanced categories at 5%, and less than 3% at the proficient level. Meanwhile, for class B, 30% are at the beginner level, followed by the largest group at the elementary level (25%), then intermediate (16.7%), upper intermediate (11%), and advanced and proficient levels at less than 10%. In the listening comprehension aspect, both class A and class B are at the beginner level with percentages of 48% and 52%, respectively.
Pemetaan Kemampuan Mahasiswa Dalam Penulisan Akademik Sebagai Dasar Sistem Pembelajaran Pendidikan Tinggi Berbasis AI Rahayu, Sri; Rahmawati, Hanifah Indah; Ghinaya, Zahra; Meirawan, Danny; Sukadi, Sukadi; Purwanto, Dedi; Iswardhany, Rieske; Sofia, Dewi Ayu; Amin, Rais
VOCATECH: Vocational Education and Technology Journal Vol 7, No 2 (2025): December
Publisher : Akademi Komunitas Negeri Aceh Barat

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.38038/vocatech.v7i2.248

Abstract

AbstractRecent advancements in Artificial Intelligence (AI) technology have yet to fully address fundamental challenges in academic writing within the context of higher education. Most existing systems remain focused on surface-level corrections, offering limited support for students struggling to construct logical arguments, organize ideas coherently, and adhere to the structural conventions of academic discourse. This study aims to analyze and map students’ academic writing proficiency as a foundation for developing AI-based learning systems that are responsive to actual needs in higher education. Employing a descriptive quantitative approach, data were collected through a closed-ended online questionnaire distributed via Google Forms. The instrument was designed based on five key dimensions: writing structure, language proficiency, argumentation and logic, referencing, and technical skills, using a 5-point Likert scale. A total of 132 final-year students from various Indonesian universities—particularly those in construction-related disciplines—participated in the study. Contextual analysis was conducted based on study programs, and data validity was enhanced through triangulation. The findings reveal that while most students fall within the “competent” category, notable deficiencies remain in language mastery and logical argumentation, preventing many from reaching a “highly competent” level. These results highlight persistent gaps in academic literacy that necessitate innovative learning interventions. The development of AI-assisted systems capable of delivering both technical and conceptual feedback is therefore essential to improving the quality of student academic writing. Further research is recommended to design an integrated AI-based academic writing platform and to expand the study population across institutions to strengthen the generalizability of the findings. AbstrakSaat ini, kemajuan teknologi Artificial Intelligence (AI) dalam pendidikan tinggi belum sepenuhnya mampu menjawab tantangan mendasar dalam hal penulisan akademik mahasiswa. Banyak sistem yang tersedia masih berfokus pada perbaikan teknis, sementara mahasiswa kerap mengalami kesulitan dalam menyusun argumen logis, mengorganisasi ide secara koheren, dan memahami struktur wacana akademik secara utuh. Penelitian ini bertujuan untuk menganalisis dan memetakan kemampuan menulis akademik mahasiswa sebagai dasar dalam merancang sistem pembelajaran berbasis AI yang relevan dengan kebutuhan aktual di pendidikan tinggi. Metode yang digunakan adalah pendekatan kuantitatif deskriptif melalui penyebaran angket tertutup menggunakan kuesioner daring berbasis Google Form. Instrumen dirancang berdasarkan lima aspek utama: struktur penulisan, penguasaan bahasa, argumentasi dan logika, penggunaan referensi, serta keterampilan teknik, dengan skala Likert 1–5. Responden terdiri atas 132 mahasiswa tingkat akhir dari berbagai perguruan tinggi di Indonesia, khususnya dari rumpun keilmuan teknik konstruksi. Data dianalisis secara kontekstual berdasarkan program studi serta diverifikasi melalui triangulasi untuk meningkatkan validitas hasil. Temuan menunjukkan bahwa sebagian besar mahasiswa berada pada kategori “mampu” dalam menulis akademik, namun belum mencapai kategori “sangat mampu”, terutama pada aspek penguasaan bahasa dan argumentasi logis. Hasil ini mengindikasikan adanya kesenjangan dalam keterampilan literasi akademik yang memerlukan intervensi pembelajaran inovatif. Oleh karena itu, pengembangan sistem pembelajaran berbasis AI yang mampu memberikan umpan balik teknis dan konseptual secara adaptif menjadi penting untuk mendorong peningkatan kualitas penulisan ilmiah mahasiswa. Rekomendasi penelitian lanjutan mencakup pengembangan sistem AI terintegrasi dan perluasan populasi lintas institusi guna memperluas generalisasi hasil.