Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : International Journal of Robotics and Control Systems

Evaluating the Effectiveness of Alzheimer’s Detection Using GANs and Deep Convolutional Neural Networks (DCNNs) Pamungkas, Yuri; Syaifudin, Achmad; Crisnapati, Padma Nyoman; Hashim, Uda
International Journal of Robotics and Control Systems Vol 5, No 2 (2025)
Publisher : Association for Scientific Computing Electronics and Engineering (ASCEE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31763/ijrcs.v5i2.1855

Abstract

Alzheimer’s is a gradually worsening condition that damages the brain, making timely and precise diagnosis essential for better patient care and outcomes. However, existing detection methods using DCNNs are often hampered by the problem of class imbalance in datasets, particularly OASIS and ADNI, where some classes are underrepresented. This study proposes a novel approach integrating GANs with DCNNs to tackle class imbalance by creating synthetic samples for underrepresented categories. The primary focus of this research is demonstrating that using GANs for data augmentation can significantly strengthen DCNNs performance in Alzheimer's detection by balancing the data distribution across all classes. The proposed method involves training DCNNs with both original and GAN-generated data, with data partitioning of 80:10:10 for training/ validation/ testing. GANs are applied to generate new samples for underrepresented classes within the OASIS and ADNI datasets, ensuring balanced datasets for model training. The experimental results show that using GANs improves classification performance significantly. In the case of the OASIS dataset, the mean accuracy and F1 Score rose from 99.64% and 95.07% (without GANs) to 99.98% and 99.96% (with GANs). For the ADNI dataset, the average accuracy and F1 Score improved from 96.21% and 93.01% to 99.51% and 99.03% after applying GANs. Compared to existing methods, the proposed GANs + DCNNs model achieves higher accuracy and robustness in detecting various stages of Alzheimer's disease, particularly for minority classes. These findings confirm the effectiveness of GANs in improving DCNNs' performance for Alzheimer's detection, providing a promising framework for future diagnostic implementations.
Deep Learning Approach to Lung Cancer Detection Using the Hybrid VGG-GAN Architecture Pamungkas, Yuri; Kuswanto, Djoko; Syaifudin, Achmad; Triandini, Evi; Hapsari, Dian Puspita; Nakkliang, Kanittha; Uda, Muhammad Nur Afnan; Hashim, Uda
International Journal of Robotics and Control Systems Vol 5, No 3 (2025)
Publisher : Association for Scientific Computing Electronics and Engineering (ASCEE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31763/ijrcs.v5i3.1923

Abstract

Lung cancer ranks among the primary contributors to cancer-related deaths globally, highlighting the need for accurate and efficient detection methods to enable early diagnosis. However, deep learning models such as VGG16 and VGG19, commonly used for CT scan image classification, often face challenges related to class imbalance, resulting in classification bias and reduced sensitivity to minority classes. This study contributes by proposing an integration of the VGG architecture and Generative Adversarial Networks (GANs) to improve lung cancer classification performance through balanced and realistic synthetic data augmentation. The proposed approach was evaluated using two datasets: the IQ-OTH/NCCD Dataset, which classifies patients into Benign, Malignant, and Normal categories based on clinical condition, and the Lung Cancer CT Scan Dataset, annotated with histopathological labels: Adenocarcinoma, Squamous Cell Carcinoma, Large Cell Carcinoma, and Normal. The method involves initial training of the VGG model without augmentation, followed by GAN-based data generation to balance class distribution. The experimental results show that, prior to augmentation, the models achieved relatively high overall accuracy, but with poor performance on minority classes (marked by low precision and F1-scores and FPR exceeding 8% in certain cases). After augmentation with GAN, all performance metrics improved dramatically and consistently across all classes, achieving near-perfect precision, TPR, F1-score, and overall accuracy of 99.99%, and FPR sharply reduced to around 0.001%. In conclusion, the integration of GAN and VGG proved effective in overcoming data imbalance and enhancing model generalization, making it a promising solution for AI-based lung cancer diagnostic systems.