Claim Missing Document
Check
Articles

Found 4 Documents
Search
Journal : Bulletin of Electrical Engineering and Informatics

Bio-engineered strategies for osteochondral defect repair Alnaimat, Feras; Owida, Hamza Abu; Turab, Nidal M.; Al-Nabulsi, Jamal I.
Bulletin of Electrical Engineering and Informatics Vol 13, No 5: October 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v13i5.7316

Abstract

Due to the absence of blood vessels and nerves, the regenerative potential of articular cartilage is significantly constrained. This implies that the impact of a ruptured cartilage extends to the entire joint. Osteoarthritis, a health condition, may arise due to injury and the progressive breakdown of joint tissues. The progression of osteoarthritis can be accelerated by the extensive degradation of articular cartilage, which is ranked as the third most prevalent musculoskeletal disorder necessitating rehabilitation, following low back pain and fractures. The existing therapeutic interventions for cartilage repair exhibit limited efficacy and seldom achieve complete restoration of both functional capacity and tissue homeostasis. Emerging technological advancements in the field of tissue engineering hold significant promise for the development of viable substitutes for cartilage tissue, capable of exhibiting functional properties. The overarching strategy involves ensuring that the cell source is enriched with bioactive molecules that facilitate cellular differentiation and/or maturation. This review provides a comprehensive summary of recent advancements in the field of cartilage tissue engineering. Additionally, it offers an overview of recent clinical trials that have been conducted to examine the latest research developments and clinical applications pertaining to weakened articular cartilage and osteoarthritis.
Applications of nanostructured materials for severe acute respiratory syndrome-CoV-2 diagnostic Turab, Nidal M.; Abu Owida, Hamza; Al-Nabulsi, Jamal I.; Alnaimat, Feras
Bulletin of Electrical Engineering and Informatics Vol 13, No 4: August 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v13i4.7325

Abstract

There is a growing concern that severe acute respiratory syndrome coronavirus 2 (SARS‑CoV‑2) infections will continue to rise, and there is now no safe and effective vaccination available to prevent a pandemic. This has increased the need for rapid, sensitive, and highly selective diagnostic techniques for coronavirus disease (COVID-19) detection to levels never seen before. Researchers are now looking at other biosensing techniques that may be able to detect the COVID-19 infection and stop its spread. According to high sensitivity, and selectivity that could provide real-time results at a reasonable cost, nanomaterial show great promise for quick coronavirus detection. In order to better comprehend the rapid course of the infection and administer more effective treatments, these diagnostic methods can be used for widespread COVID-19 identification. This article summarises the current state of research into nanomaterial-based biosensors for quick SARS‑CoV‑2 diagnosis as well as the prospects for future advancement in this field. This research will be very useful during the COVID-19 epidemic in terms of establishing rules for designing nanostructure materials to deal with the outbreak. In order to predict the spread of the SARS-CoV-2 virus, we investigate the advantages of using nano-structure material and its biosensing applications.
Application of smart hydrogels scaffolds for bone tissue engineering Owida, Hamza Abu; Alnaimat, Feras; Al-Nabulsi, Jamal I.; Al-Ayyad, Muhammad; Turab, Nidal M.
Bulletin of Electrical Engineering and Informatics Vol 13, No 6: December 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v13i6.7608

Abstract

Recent attention in the biomedical and orthopedic sectors has been drawn towards bone defects, emerging as a prominent focus within orthopedic clinics. Hydrogels, due to their biocompatibility, elevated water content, softness, and flexibility, are increasingly acknowledged in tissue regeneration research. Advanced biomaterials offer numerous advantages over traditional materials, notably the capacity to respond to diverse physical, chemical, and biological stimuli. Their responsiveness to environmental cues, such as three-dimensional (3D) morphology and phase conditions, holds promise for enhancing the efficacy of localized bone lesion repairs. This paper aims to revolutionize the treatment of severe bone abnormalities by providing a comprehensive examination of hydrogels capable of morphological adaptation to environmental changes. It delineates their classification, manufacturing principles, and current research status within the field of bone defect regeneration.
Progress in self-powered medical devices for breathing recording Abu Owida, Hamza; Turab, Nidal; Al-Nabulsi, Jamal I.; Al-Ayyad, Muhammad
Bulletin of Electrical Engineering and Informatics Vol 13, No 5: October 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v13i5.5253

Abstract

Wearable and implantable medical technologies are increasingly being used for the diagnosis, treatment, and prevention of illnesses and other health concerns. One's respiration can be monitored using any number of different biosensors and tracking devices. Self-powered sensors, for example, have a reduced total cost, are easy to prepare, have a high degree of design-ability, and are available in a number of different forms when compared to other types of sensors. The mechanical energy stored in the respiratory system could be converted into electrical energy by using airflow to operate self-powered sensors. Self-recharging sensors and systems are now in development to make home health monitoring and diagnosis more practical. There has not been a lot of study devoted to the models of respiratory sickness or the output signals that connect with them. Thus, investigating the character of their bond is not only difficult but also crucial. This article examined the theory behind self-powered breathing sensors and systems, as well as their output characteristics, detection indices, and other cutting-edge developments. To help communicate knowledge to other academics working in this field and interested in this topic, we also explored the challenges and potential benefits of autonomous sensors.