Claim Missing Document
Check
Articles

Found 17 Documents
Search

Sharing Knowledge and Build a Better Mindset di SMK Widya Nusantara Eko Prastio; Nugroho Marsiyanto; Edy Susanto
Jurnal Sains Teknologi dalam Pemberdayaan Masyarakat Vol. 2 No. 2 (2021): December 2021
Publisher : Fakultas Teknik Universitas Bhayangkara Jakarta Raya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31599/jstpm.v2i2.873

Abstract

Knowledge sharing bertujuan untuk menyebarkan ilmu atau informasi. Biasanya hal ini bisa berwujud dalam bentuk kegiatan, diskusi, presentasi, tutor, dan masih banyak lagi lainnya. Dengan implementasi yang tepat knowledge sharing bisa dilakukan dengan baik agar setiap orang tersebut bisa merasakan manfaatnya, saling berkembang dan belajar dari satu sama lain. Knowledge sharing yang bisa dilakukan dalam peningkatan potensi dan kompetensi siswa, bisa menggunakan berbagai cara lain, salah satunya adalah dengan membuat siswa lebih taat dalam hal peraturan disekolah. Memiliki wawasan yang luas itu sangat penting bagi kita semua. Oleh karena itu, untuk generasi milenial ini harus memiliki wawasan yang luas dan berpikir secara lebih baik. Mahasiswa sebagai salah satu komponen dalam hal ini, dituntut untuk menjadi pihak yang menjembatani kesenjangan hal tersebut. Dengan kata lain, wujud nyata yang harus dilakukan oleh mahasiswa adalah membantu siswa-siswi untuk bisa berkembang menjadi lebih baik. Mahasiswa menjadi generasi penggerak perubahan di negeri ini yang akan memegang estafet kepemimpinan di masa yang akan datang, maka dari itu mahasiswa harus berperan aktif menjadi pelopor terbentuknya rasa jiwa kepemimpinan. Untuk itu dibutuhkan pengetahuan dan kemampuan. Selain itu pengembangan kemampuan pada siswa/siswi sangatlah penting agar bisa melahirkan generasi penerus yang baik.
Optimisasi Operasi Pemboran Di Basin Afrika Utara Aly Rasyid; Nugroho Marsiyanto
Jurnal Jaring SainTek Vol. 3 No. 1 (2021): April 2021
Publisher : Fakultas Teknik, Universitas Bhayangkara Jakarta Raya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31599/jaring-saintek.v3i1.332

Abstract

Drilling optimization objective was to reduce costs, improve wellbore conditions and integrity for increasingly challenging reservoirs while establishing maximum safety performance and environmental custodianship. Even though the final result of a drilling operation is easily observed, what almost always goes unnoticed is the complexity of the issues involved in the planning and execution of a drilling operation and the number of topics involved in such a process. In this paper, as case study of the exploration drilling in Hamada region, North Africa has been evaluated. Over the period of 2006 to 2011, continued drilling improvement was achieved. Key elements in the optimization included focus on management drilling team structure, engineering well planning, improvements on managing drilling operations such as on site safety management practices, and also post drill analysis to implement lesson learn for the next well to be drilled. As the result, while drilling 26 wells during the 2006 until 2011, drilling days were successfully reduced from 87 days (first well) to the average 40 days, and very good safety record performance.
Perbandingan Pemilihan Antara Tipe Wellhead Conventional Dengan Wellhead Unihead Nugroho Marsiyanto; Aly Rasyid; Sigit Widianto
JURNAL BHARA PETRO ENERGI Vol 1 No 1: Volume 1 Nomor 1 (Maret 2022)
Publisher : Department of Petroleum Engineering

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (600.908 KB) | DOI: 10.31599/bpe.v1i1.1007

Abstract

The wellhead is a surface well control device made of steel which forms a seal / baffle system to withstand bursts or leaks of liquid from the well to the surface composed of casing head (casing hanger) and tubing head (tubing hanger). Wellhead used in an oil or gas well must have a long runlife because an oil or gas well can last up to decades, and if it is necessary to replace the wellhead will take large costs. This paper determines the process in selecting the use and effectiveness of wellhead and comparing conventional wellhead versus unihead wellhead at W well that is efficient and safe during drilling well and optimal utilization during production process. Wellhead type selection process cover determining temperature class, material class, pressure rating, installation costs, and in terms of safety. Based on the selection process, W wellhead well has the temperature class used is class U, the material class used is the type FF-0.5 or HH-0.5, for a pressure rating of 3000 psi, and in terms of cost it is more economical to use unihead wellhead type.
Penentuan Jenis Fluida Reservoar Di Lapangan M, Blok N, Sumatera Selatan Nugroho Marsiyanto
JURNAL BHARA PETRO ENERGI Vol 1 No 1: Volume 1 Nomor 1 (Maret 2022)
Publisher : Department of Petroleum Engineering

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (699.478 KB) | DOI: 10.31599/bpe.v1i1.1014

Abstract

Reservoir fluid type in oil or gas field must be determined very early in the life of reservoir because it is as critical factor in many of decisions made about producing strategy of the fluid from the reservoir. It also influence in the depletion reservoirs strategy. Reservoir fluid type can be confirmed only by observing a representative fluid sample in the laboratory testing. However, rules of thumb based on production data such as initial producing GOR, stock tank liquid gravity, and stock tank liquid color usually will indicate reservoir fluid type of those reservoirs. M field was discovered in December 1989 with the drilling of M-1 well. Subsequently, in July 1991, the M-2 well was drilled. In November 1997, an appraisal well, M-3, was drilled. Based on total production testing at M field indicated that the potential deliverability is 30 MMSCFD and M field have being produced since March 2002 up to date from those three wells. Objective of this paper is to determine fluid type in this M field. Based on the laboratory testing data from those 3 wells, the heptane plus concentration of M1 well is 0.47 % mole, the heptane plus concentration of M2 well is 0.67 % mole, and the heptane plus concentration of M3-well is 0.64 % mole. The Initial Gas Oil Ratio of M field refer to well testing is ranging from from 75,000 scf/STB to 554,545 scf/STB which is high GOR producing. Based on those 2 methods to determine reservoir fluid types, the laboratory testing and rules of thumb on intial production data, the fluid type of M field is categorized as A Dry Gas. This fluid determination is giving the advantages of strategic field drainage optimally and economically to the field.
Evaluasi Stimulasi Hydraulic Fracturing Dan Analisa Produktivitas Sumur Pada Formasi Sandstone Sumur ”MG-09” Lapangan ”FI” Aly Rasyid; Nugroho Marsiyanto; M Gilang Farhana Irsyad
JURNAL BHARA PETRO ENERGI Vol 1 No 2: July 2022
Publisher : Department of Petroleum Engineering

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (226.234 KB) | DOI: 10.31599/bpe.v1i2.1435

Abstract

Abstract Hydraulic fracturing is a stimulation method by injecting treatment fluid to fracture a formation by using proppant (sand) as a fracture buffer media which aims to improve the production rate in the well. Fracture geometry evaluation is done to get the right fracture geometry value. In the production evaluation, using the Howard and Fast method, the Kavg value in the MG-09 well was 39.4094 mD. Based on the actual production rate after hydraulic fracturing in well MG-09 there was an increase in the total flow rate from 65 BLPD to 182 BLPD. Based on the calculation of the increase in Productivity Index, the Prats method obtained an increase in PI of 2.63 times, while the CSD method (Cinco-ley, Samaniego and Dominique) obtained a multiple of the increase in productivity (K2P) or an increase in PI of 2.63 times and the skin factor of +12 to -4.8 Based on the comparison of the three-phase IPR curve of the Pudjo-Sukarno method, where at the same Pwf of 400 psi there was an increase in oil production from 45 BOPD to 134 BOPD. Therefore, the results of the hydraulic faracturing evaluation of the MG-09 well in terms of the work process (proppant, fracturing fluid), production analysis (permeability, productivity index, increased productivity index of the prats and CSD methods, level of skin repair and IPR curve analysis) were declared successful. Keywords: Hydraulic fracturing, fluida treatment, Productivity Index, IPR tiga fasa. Abstrak Hydraulic fracturing (perekahan hidrolik) adalah suatu metode stimulasi dengan menginjeksikan fluida treatment untuk merekahkan suatu formasi dengan menggunakan proppant (pasir) sebagai media pengganjal rekahan yang bertujuan untuk meningkatkan laju produksi pada sumur. Evaluasi geometri rekahan dilakukan untuk mendapatkan nilai geometri rekahan yang tepat. Pada evaluasi produksi, dengan metode Howard dan Fast diperoleh nilai Kavg pada sumur MG-09 sebesar 39,4094 mD. Berdasarkan laju produksi aktual setelah dilakukan Hydraulic Fracturing pada sumur MG-09 terjadi peningkatan laju aliran total dari 65 BLPD menjadi 182 BLPD. Berdasarkan kalkulasi penghitungan Productivity Index, dengan metode Prats diperoleh peningkatan PI sebesar 2,63 kali, sedangkan dengan metode CSD (Cinco-ley, Samaniego dan Dominique) diperoleh angka kenaikan produktivitas (K2P) atau peningkatan PI sebesar 2,63 kali dan faktor skin dari +12 menjadi -4,8 Berdasarkan perbandingan kurva IPR tiga fasa metode Pudjo-Sukarno, dimana pada Pwf yang sama 400 psi terjadi peningkatan produksi minyak dari 45 BOPD menjadi sebesar 134 BOPD. Sehingga hasil evaluasi hydraulic faracturing pada sumur MG-09 dari segi proses kerja (proppant, fluida perekah), analisa produksi (permeabilitas, productivity index, peningkatan indeks produktifitas metode prats dan CSD, tingkat perbaikan skin dan analisis kurva IPR) dinyatakan berhasil. Kata kunci: Hydraulic fracturing, fluida treatment, Productivity Index, IPR tiga fasa. Reference: Agusman, Abdullah Rizky, Aly Rasyid, and Dika Latief Lesmana. "Evaluasi Water Shut Off Dan Membuka Lapisan Baru Sumur Bagong Di Lapangan Lesma." JURNAL BHARA PETRO ENERGI (2022): 38-43. Allen, Thomas O., Roberts, Alan P. 1989. “Production Operation 2: Well Completion, Workover and Stimulation”. Tulsa, Oklahoma: Oil & Gas Consultants Int. Inc. Carbolite Data Sheet Product Information. CARBO Ceramics, 2006. “Rencana Kerja Tahun 2014. Fungsi T. Produksi Asset 3”, PT. Bukitapit Bumi Persada. Economides, Michael J., Kenneth G. Nolte. “Reservoir Stimulation”, Houston, Texas: Energy Tribune Publishing Inc. Economides, Michael J., Martin, T. 2007. “Modern Fracturing, Enhancing Natural Gas Production”. Houston, Texas: Energy Tribune Publishing Inc. Montgomery, Carl. (2013). Fracturing fluids chapter I. Australia: NSI technology, Tulisa, Okhlama, USA. Rasyid, A., Nasution, M. M., Soesanto, E., & Afindera, H. (2021). Penentuan Zona Prospek Pada Kerja Ulang Pindah Lapisan Dengan Analisis Log Pada Lapangan X Sumur T. Jurnal Kajian Ilmiah, 21(3), 307-316. Rasyid, A., & Lestari, T. S. (2018). Penentuan Produktivitas Zona Minyak Dengan Menggunakan Modular Formation Dynamic Technology. Jurnal Kajian Ilmiah, 18(1).  
Evaluasi Pemilihan Electric Submersible Pump (ESP) Untuk Menggantikan Gas Lift (GL) Di Sumur X Lapangan Offshore Y Nugroho Marsiyanto; Eko Prasetio; Aly Rasyid
JURNAL BHARA PETRO ENERGI Vol 1 No 3: December 2022
Publisher : Department of Petroleum Engineering

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31599/bpe.v1i3.1739

Abstract

Well X is located in the offshore Y field, where there are 7 production wells, all of which use an artificial lift in the form of a gas lift. In this field, oil is produced from the N oil layer while the gas layer comes from the K layer. Well X was drilled in May 2013 with a target of N oil formation at a depth of 9,007 ft MD, slope (450) and 4-1/2" Liner completion. The initial production of well X was 1,632 BOPD; 5.3 MMSCFD; 0% BSW. Well X is the only well in the Y offshore field that does not penetrate the K gas formation, so gas production from nearby wells is used to produce oil from the N formation. well-to-well gas lift. Along with production time, the reservoir pressure in the N oil layer and K gas layer has decreased, so that oil production in well X has also decreased. With changes in company policy that optimize and increase gas production to increase gas sales to the industry around the company's operational areas since early 2017, the outgoing pressure on the Y platform has increased from 210 psi to 450 psi, causing a total oil well X could not pass through and produce due to high outgoing pressure on platform Y. Well X's last production data was on January 31 2017 with oil production of 179 BOPD and 1.25 MMSCD for gas production and gas lift injection of 0.75 MMSCFD, before finally shutting down. The selection of another artificial lift as a substitute for the gas lift has been carried out to revive well X later. Based on the alloy table made by Weatherford for the selection of artificial lifts for conditions on the Y field platform, ESP has many advantages and appropriate flexibility compared to other types of artificial lifts. The ESP type D1050N which is a mix flow ESP has been selected and after installation in well X in August 2019 it has successfully revived with a production test of 885 BFPD, 681 BOPD, and 23% water content on September 3 2019. ESP in well X has been in production for 2 years, until finally experiencing a leaky tubing problem in September 2021 and requiring a new tubing replacement job along with a new ESP replacement to revive the X well. Reference: Brown, E., Kermit, (1977). The Technology of Artificial Lift Method”, Volume 2a, Oklahoma; Pennwell Publishing Company. Brown, E., Kermit (1980). The Technology of Artificial Lift Method”, Volume 3a, Oklahoma; Pennwell Publishing Company. Data-data Lapangan Sumur X Lapangan Offshore Y. (2019-2021). Gabor, Takack. (2009). Electric Submersible Pump Manual Desingn, Operations and Maintenance. United States of America: Gulf Publishing Company. Weatherford. (2005). Artificial Lift System.  
Respon Tekanan Transient Pada Reservoir Gas Multilayer Dengan Hydraulic Fracturing M. Mahlil Nasution; Nugroho Marsiyanto; Citra Wahyuningrum
JURNAL BHARA PETRO ENERGI Vol 2 No 1: May 2023
Publisher : Department of Petroleum Engineering

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31599/bpe.v2i1.2382

Abstract

Abstract Transient pressure analysis is designed to provide a quantitative analysis of reservoir properties. The data from the test results are collected to support information on a reservoir which is then used to become a predictive model and update the geological model. Based on the type, Pressure Transient is divided into pressure Build up and Pressure Drawdown. In testing, Pressure Transient analysis can describe the characteristics of the reservoir properties or the formation's ability to produce fluid. This test has advantages compared to other techniques in determining reservoir characteristics, because the transient pressure test covers a larger area so that it allows estimation of porosity, reservoir permeability, average pressure, skin, fracture length, reservoir heterogeneity, drainage area, shape, and even distance. can reach up to the boundary or flow discontinuities. Keywords: Reservoir, Pressure Build Up, Pressure DrawDown, Hydraulic Fracturing, Transient Pressure Abstrak Analisa tekanan transien dirancang untuk memberikan analisis kuantitatif dari sifat- sifat reservoir. Data-data hasil pengujian tersebut dikumpulkan Untuk dapat digunakan menjadi data penunjang informasi suatu reservoir yang kemudian akan digunakan sebagai model prediktif serta memperbarui model geologi. Jika di Klasifikan menurut jenisnya maka Pressure Transient dapat dibagi menjadi dua yaitu  pressure Build up dan Pressure Drawdown. Dalam suatu pengujian analisa dari  Pressure Trasient akan dapat menggambarkan karakter atau sifat dari suatu reservoir atau kemampuan dari  formasi untuk bisa menghasilkan suatu fluida. Pengujian ini memiliki kelebihan apabila dibandingkan dengan teknik atau metode lain dalam menentukan karakteristik atau sifat dari reservoir, hal ini  dikarenakan pengujian tekanan transient dapat mencakup daerah yang jauh lebih besar sehingga jal ini memungkinkan estimasi atau perkiraan dari harga  porositas, tekanan rata-rata, permeabilitas reservoir, panjang fraktur, skin, heterogenitas reservoir, jarak, bentuk, bahkan luas drainase nya dapat di perkirakan  hingga mencapai  bidang batasnya (boundary) atau yang lebih dikenal dengan istilah flow discontinuities. Kata kunci: Reservoir, Pressure Build Up, Pressure Drawdown, Hydraulic Fracturing, Tekanan Transient. Reference: Yew, C. H. (1978). Mechanics of Hydraulic Fracturing. Texas : Gulf Publishing Company. Williams, B. B., Gidley, J. L., Schechter, R. S. (1979). Acidizing Fundamentals. New York : AIME. Anonim. (2003). Perencanaan Hydraulic Fracturing. Jakarta : Pertamina Handbook Perencanaan Stimulasi (Pdf). Schechter, R. S. (1992). Oil Well Stimulation. Englewood Cliffs New Jersey : Prentice Hall. Petroleum Engineer Field Pendopo. (2012). Data Produksi, Data Reservoir, Data Komplesi Sumur MHL-11. Laporan Kerja Fungsi Petroleum Engineer. Prabumulih: PT Pertamina Hulu Rokan. Economides, M. J., Martin, T. (2007). Modern Fracturing, Enhancing Natural Gas Production. Houston : ET Publishing. James, S. S. (2012). Post Job Report SPA -028 Spectra Frac 4000 with 20/40 carbolite. Pendopo : BJ Service. Economides, M. J., Hill, A. D., Ehlig, C. (1994). Petroleum Production System. New Jersey : Prentice Hall. Economides, M. J., Nolte, K. G. (1989). Reservoir Stimulation. New Jersey : Prentice Hall. 10. Golan, M., Whitson, C. H. (1991). Well Performance. Norway : Prentice Hall Rasyid, A., & Lestari, T. S. (2018). Penentuan Produktivitas Zona Minyak Dengan Menggunakan Modular Formation Dynamic Technology. Jurnal Kajian Ilmiah, 18(1).
Evaluasi Stimulasi Hydraulic Fracturing Dan Analisa Produktivitas Sumur Pada Formasi Sandstone Sumur ”MG-09” Lapangan ”FI” Aly Rasyid; Nugroho Marsiyanto; M Gilang Farhana Irsyad
Jurnal Bhara Petro Energi Vol.1 No.1 (Mei 2022)
Publisher : Fakultas Teknik Universitas Bhayangkara Jakarta Raya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31599/qr7t9x63

Abstract

Hydraulic fracturing is a stimulation method by injecting treatment fluid to fracture a formation by using proppant (sand) as a fracture buffer media which aims to improve the production rate in the well. Fracture geometry evaluation is done to get the right fracture geometry value. In the production evaluation, using the Howard and Fast method, the Kavg value in the MG-09 well was 39.4094 mD. Based on the actual production rate after hydraulic fracturing in well MG-09 there was an increase in the total flow rate from 65 BLPD to 182 BLPD. Based on the calculation of the increase in Productivity Index, the Prats method obtained an increase in PI of 2.63 times, while the CSD method (Cinco-ley, Samaniego and Dominique) obtained a multiple of the increase in productivity (K2P) or an increase in PI of 2.63 times and the skin factor of +12 to -4.8 Based on the comparison of the three-phase IPR curve of the Pudjo-Sukarno method, where at the same Pwf of 400 psi there was an increase in oil production from 45 BOPD to 134 BOPD. Therefore, the results of the hydraulic faracturing evaluation of the MG-09 well in terms of the work process (proppant, fracturing fluid), production analysis (permeability, productivity index, increased productivity index of the prats and CSD methods, level of skin repair and IPR curve analysis) were declared successful.
Evaluasi Pemilihan Electric Submersible Pump (ESP) Untuk Menggantikan Gas Lift (GL) Di Sumur X Lapangan Offshore Y Nugroho Marsiyanto; Eko Prastio; Aly Rasyid
Jurnal Bhara Petro Energi Vol.1 No.2 (November 2022)
Publisher : Fakultas Teknik Universitas Bhayangkara Jakarta Raya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31599/zx02t628

Abstract

Well X is located in the offshore Y field, where there are 7 production wells, all of which use an artificial lift in the form of a gas lift. In this field, oil is produced from the N oil layer while the gas layer comes from the K layer. Well X was drilled in May 2013 with a target of N oil formation at a depth of 9,007 ft MD, slope (450) and 4-1/2" Liner completion. The initial production of well X was 1,632 BOPD; 5.3 MMSCFD; 0% BSW. Well X is the only well in the Y offshore field that does not penetrate the K gas formation, so gas production from nearby wells is used to produce oil from the N formation. well-to-well gas lift. Along with production time, the reservoir pressure in the N oil layer and K gas layer has decreased, so that oil production in well X has also decreased. With changes in company policy that optimize and increase gas production to increase gas sales to the industry around the company's operational areas since early 2017, the outgoing pressure on the Y platform has increased from 210 psi to 450 psi, causing a total oil well X could not pass through and produce due to high outgoing pressure on platform Y. Well X's last production data was on January 31 2017 with oil production of 179 BOPD and 1.25 MMSCD for gas production and gas lift injection of 0.75 MMSCFD, before finally shutting down. The selection of another artificial lift as a substitute for the gas lift has been carried out to revive well X later. Based on the alloy table made by Weatherford for the selection of artificial lifts for conditions on the Y field platform, ESP has many advantages and appropriate flexibility compared to other types of artificial lifts. The ESP type D1050N which is a mix flow ESP has been selected and after installation in well X in August 2019 it has successfully revived with a production test of 885 BFPD, 681 BOPD, and 23% water content on September 3 2019. ESP in well X has been in production for 2 years, until finally experiencing a leaky tubing problem in September 2021 and requiring a new tubing replacement job along with a new ESP replacement to revive the X well.
Respon Tekanan Transient Pada Reservoir Gas Multilayer Dengan Hydraulic Fracturing M. Mahlil Nasution; Nugroho Marsiyanto; Citra Wahyuningrum
Jurnal Bhara Petro Energi Vol.2 No.1 (Mei 2023)
Publisher : Fakultas Teknik Universitas Bhayangkara Jakarta Raya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31599/5bper717

Abstract

Transient pressure analysis is designed to provide a quantitative analysis of reservoir properties. The data from the test results are collected to support information on a reservoir which is then used to become a predictive model and update the geological model. Based on the type, Pressure Transient is divided into pressure Build up and Pressure Drawdown. In testing, Pressure Transient analysis can describe the characteristics of the reservoir properties or the formation's ability to produce fluid. This test has advantages compared to other techniques in determining reservoir characteristics, because the transient pressure test covers a larger area so that it allows estimation of porosity, reservoir permeability, average pressure, skin, fracture length, reservoir heterogeneity, drainage area, shape, and even distance. can reach up to the boundary or flow discontinuities.