Claim Missing Document
Check
Articles

Found 15 Documents
Search

RAINFALL FORECASTING WITH AN INTERMITTENT APPROACH USING HYBRID EXPONENTIAL SMOOTHING NEURAL NETWORK Permata, Regita Putri; Muhaimin, Amri; Hidayati, Sri
BAREKENG: Jurnal Ilmu Matematika dan Terapan Vol 18 No 1 (2024): BAREKENG: Journal of Mathematics and Its Application
Publisher : PATTIMURA UNIVERSITY

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30598/barekengvol18iss1pp0457-0466

Abstract

Rainfall forecasting is crucial in agriculture, water resource management, urban planning, and disaster preparation. Traditional approaches fail to capture complicated and intermittent rainfall patterns. The “Hybrid Exponential Smoothing Neural Network” is introduced in this study to handle intermittent rainfall forecasting issues. Exponential Smoothing, an established approach for discovering underlying patterns and seasonal fluctuations in time series data, is combined with Neural Networks, which are good at capturing complex linkages and nonlinearities. Using these two methods, this model hopes to deliver a complete rainfall forecasting solution that accounts for short-term changes and long-term patterns. This research uses residuals from the exponential smoothing model and is modeled using a Neural Network. The residual input is transformed using rolling mean. The results show that the hybrid model is able to capture patterns well, but there are still patterns that experience time lag. Experimental results obtained reveal that the hybrid methodology performs better than the model exponential smoothing, implying that the proposed model hybrid synergy approach can be used as an alternative solution to the rainfall time series forecasting. The results show that the Hybrid method can form patterns better than individual exponential smoothing models or neural networks. The RMSSE values for all areas are 1.0185, 1.55092, 1.0872.
Social Media Analysis and Topic Modeling: Case Study of Stunting in Indonesia Muhaimin, Amri; Fahrudin, Tresna Maulana; Alamiyah, Syifa Syarifah; Arviani, Heidy; Kusuma, Ade; Sari, Allan Ruhui Fatmah; Lisanthoni, Angela
Telematika Vol 20 No 3 (2023): Edisi Oktober 2023
Publisher : Jurusan Informatika

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31315/telematika.v20i3.10797

Abstract

Purpose: Stunting is a problem that currently requires special attention in Indonesia. The stunting rate in 2022 will drop to 21.6%, and for the future, the government has set a target of up to 14% in 2024. Rapid technological developments and freedom of expression on the internet produce review text data that can be analyzed for evaluation. This study analyzes the text data of Twitter users' reviews on stunting. The method used is a text-mining approach and topic modeling based on Latent Dirichlet Allocation.Design/methodology/approach: The methodology used in this study is Latent Dirichlet Allocation. The data was collected from twitter with the keyword 'stunting'. After, the data was cleaned and then modeled using the Latent Dirichlet Allocation.Findings/results: The results show that negative sentiment dominates by 60.6%, positive sentiment by 31.5%, and neutral by 7.9%. In addition, this research shows that 'children', 'decrease', 'number', 'prevention', and 'nutrition' are among the words that often appear on stunting.Originality/value/state of the art: This study uses the keyword stunting and analyzes it. Social media analytics show that the people of Indonesia are primarily aware of stunting. Also, the Latent Dirichlet Analysis can be used to create the model.
PERAMALAN MENGGUNAKAN HYBRID SEASONAL ARIMA DAN EXTREME LEARNING MACHINE: STUDI KASUS JUMLAH PRODUKSI BERAS DI PROVINSI JAWA TIMUR Pakpahan, Vera Febrianti; Muhaimin, Amri; Syaifullah, Wahyu
Jurnal Informatika Teknologi dan Sains (Jinteks) Vol 7 No 4 (2025): EDISI 26
Publisher : Program Studi Informatika Universitas Teknologi Sumbawa

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.51401/jinteks.v7i4.6673

Abstract

Penelitian ini mengevaluasi performa metode hybrid Seasonal Autoregressive Integrated Moving Average (SARIMA) dan Extreme Learning Machine (ELM) untuk peramalan data deret waktu. Metode SARIMA digunakan untuk menangkap pola musiman dan linier, sedangkan ELM diaplikasikan pada residual prediksi SARIMA untuk mendeteksi pola non-linier yang sulit ditangkap oleh model tradisional. Studi kasus difokuskan pada prediksi produksi beras bulanan di Provinsi Jawa Timur, salah satu lumbung beras nasional dengan fluktuasi produksi yang memengaruhi perencanaan distribusi dan kebijakan pangan. Hasil evaluasi menunjukkan bahwa model hybrid SARIMA–ELM mencapai nilai MAPE sebesar 9,01% dan RMSE sebesar 38.639,93, menunjukkan akurasi prediksi yang baik. Temuan ini menegaskan bahwa kombinasi SARIMA dan ELM dapat menjadi pendekatan yang efektif untuk peramalan deret waktu dengan pola linier dan non-linier, serta memiliki potensi untuk diterapkan pada dataset atau sektor lain yang memiliki karakteristik serupa.
Evaluasi Pembelajaran yang Interaktif dan Inovatif melalui Pemanfaatan Canva dan Permainan Edukasi Digital untuk Guru Bahasa Indonesia Tingkat SMP di Kota Surabaya Hamid, Abdul; Sa'diyah, Ilmatus; Muhaimin, Amri; Rusdianti Maulani Putri, Adinda; Putri Pascha, Dea
Sewagati Vol 9 No 5 (2025)
Publisher : Pusat Publikasi ITS

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/j26139960.v9i5.7881

Abstract

Kegiatan pengabdian kepada masyarakat ini bertujuan untuk meningkatkan kapasitasguru Bahasa Indonesia tingkat SMP di Kota Surabaya dalam merancang danmenerapkan asesmen pembelajaran yang interaktif dan inovatif dengan memanfaatkanplatform digital seperti Quizziz, Educandy, Wordwall, Canva, Bamboozle,dan Socrative. Kegiatan ini dilatarbelakangi oleh rendahnya variasi metode asesmenyang digunakan guru, yang umumnya masih bersifat konvensional dan kurang melibatkanaspek afektif serta psikomotor siswa. Program pelatihan dilaksanakan melaluilima tahapan sosialisasi, pelatihan, implementasi, pendampingan, dan keberlanjutanprogram. Metode yang digunakan meliputi pelatihan praktik langsung (learningby doing), pendampingan teknis, serta evaluasi menggunakan pretest, posttest, dankuesioner umpan balik. Hasil pelatihan menunjukkan bahwa lebih dari 95% gurumenyatakan materi pelatihan sangat relevan dengan kebutuhan mereka dan memberikanwawasan baru dalam penyusunan asesmen interaktif. Selain itu, mayoritasguru merasa termotivasi untuk menjadi lebih kreatif dan inovatif dalam merancangasesmen. Hasil ini menunjukkan bahwa kegiatan ini memberikan kontribusi nyatadalam meningkatkan profesionalisme guru dan mendukung implementasi KurikulumMerdeka secara efektif.
Prediksi Viralitas Tweet Berbahasa Indonesia Menggunakan IndoBERTweet, RoBERTa, dan Multi-Layer Perceptron untuk Optimalisasi Strategi Pemasaran Digital Putri, Deannisa Syafira; Muhaimin, Amri; Idhom, Mohammad
Jurnal Ilmiah IT CIDA Vol 11 No 2: Desember 2025
Publisher : STMIK AMIKOM Surakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.55635/jic.v11i2.297

Abstract

Penelitian ini bertujuan memprediksi tingkat viralitas tweet berbahasa Indonesia dengan menggabungkan fitur teks, sentimen, dan numerik melalui model IndoBERTweet, RoBERTa, dan Multi-Layer Perceptron (MLP). IndoBERTweet digunakan untuk menghasilkan representasi semantik, RoBERTa untuk menganalisis polaritas sentimen, dan MLP sebagai klasifikator yang menggabungkan seluruh fitur. Dataset terdiri dari 1.716 tweet promosi pada platform X (27 November 2024–27 Mei 2025), yang setelah pra-pemrosesan dan pelabelan menggunakan Gaussian Mixture Model (GMM) menghasilkan 1.481 data bersih siap latih. Model mencapai performa tinggi dengan akurasi 96,99%, precision 96,97%, recall 96,99%, dan F1-score 96,97%, mencatat peningkatan sebesar 0,32% dibandingkan Linear SVM dan 1,66% dibandingkan Decision Tree. Temuan ini menunjukkan bahwa integrasi representasi semantik dan sentimen secara efektif meningkatkan akurasi prediksi dibandingkan pendekatan tunggal, serta berpotensi membantu praktisi pemasaran digital merancang strategi kampanye yang lebih tepat sasaran dan berpeluang viral.