Claim Missing Document
Check
Articles

Found 4 Documents
Search
Journal : The Indonesian Journal of Computer Science

Implementasi Algoritma MFCC dan CNN dalam Klasifikasi Makna Tangisan Bayi Yusdiantoro, Senli Yusdiantoro; Sasongko, Theopilus Bayu
The Indonesian Journal of Computer Science Vol. 12 No. 4 (2023): The Indonesian Journal of Computer Science (IJCS)
Publisher : AI Society & STMIK Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33022/ijcs.v12i4.3243

Abstract

Menangis merupakan salah satu usaha bayi dalam berkomunikasi untuk menyampaikan suatu kondisi yang sedang dialaminya, baik itu sedang lelah, sakit perut, rasa tidak nyaman maupun lapar. Bagi sebagian orang tua yang baru memiliki anak tentu tidak selalu mampu untuk memahami apa yang dikehendaki oleh bayi ketika dia menangis, karena suara tangisan yang dihasilkan terdengar hampir sama. Maka, pada penelitian ini dibuat sebuah sistem klasifikasi makna tangisan bayi dengan mengimplementasikan deep learning. Untuk memahami arti tangisan bayi berdasarkan penyebabnya dengan mengimplementasikan metode Mel-Frequency Cepstral (MFCC) sebagai fitur ekstraksi ciri dan CNN sebagai metode klasifikasi. Diantara proses pelatihan dan pengujian yang telah berhasil dilakukan dalam penelitian ini diperoleh hasil akurasi tertinggi terhadap pelatihan yang dilakukan dengan 50 epoch sebesar 93,84% dan model mampu mengklasifikasikan makna tangisan bayi berdasarkan penyebabnya terhadap data baru dengan rata-rata akurasi 88.04%.
Hyperparameter Tuning Algoritma Supervised Learning untuk Klasifikasi Keluarga Penerima Bantuan Pangan Beras Joshua Agung Nurcahyo; Theopilus Bayu Sasongko
The Indonesian Journal of Computer Science Vol. 12 No. 3 (2023): The Indonesian Journal of Computer Science
Publisher : AI Society & STMIK Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33022/ijcs.v12i3.3254

Abstract

Indonesia memiliki berbagai macam program untuk menekan kemiskinan, salah satunya adalah program bantuan pangan beras. Namun, berdasarkan temuan di lapangan, program bantuan ini tidak tepat sasaran. Melalui klasifikasi supervised learning dengan hyperparameter tuning, penelitian ini bertujuan untuk mengetahui algoritma klasifikasi umum yang paling optimal dan akurat dalam menentukan keluarga penerima bantuan pangan beras. Algoritma Support Vector Machine (SVM), decision tree, naïve bayes, dan K-nearest neighbor (Knn) serta metode hyperparameter tuning grid search, random search, dan optimasi bayesian digunakan dalam penelitian. Data pada penelitian ini bersumber dari IFLS. Berdasarkan hasil analisis, penerapan hyperparameter tuning memiliki dampak yang signifikan dalam meningkatkan kinerja algoritma KNN, decision tree, dan SVM. Algoritma Knn dengan random search serta optimasi bayesian dan SVM dengan optimasi bayesian memberikan nilai akurasi yang sama, yakni sebesar 74%.Oleh karena itu, model tersebut memiliki kinerja yang setara dan sama baiknya dalam mengklasifikasikan keluarga penerima bantuan pangan beras.
Optimasi K-Nearest Neighbor dengan Grid Search CV pada Prediksi Kanker Paru-Paru Kusuma, Satya Tegar; Sasongko, Theopilus Bayu
The Indonesian Journal of Computer Science Vol. 12 No. 4 (2023): The Indonesian Journal of Computer Science (IJCS)
Publisher : AI Society & STMIK Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33022/ijcs.v12i4.3267

Abstract

Kanker paru-paru adalah salah satu kanker paling mematikan di seluruh. Salah satu penyebab kematian pada penderita kanker paru-paru adalah tidak ada sistem untuk memprediksi kanker paru-paru secara optimal apakah pasien menderita kanker paru-paru atau tidak. Oleh karena itu, penelitian ini bertujuan untuk melakukan optimasi nilai K pada algoritma k-nearest neighbor (KNN) menggunakan metode grid search cv. Algoritma KNN dipilih karena pada berbagai penelitian memiliki tingkat akurasi yang lebih baik dibandingkan dengan algoritma supervised learning lainnya. Data yang digunakan pada penelitian ini bersumber dari data publik yang ada di kaggle. Berdasarkan penelitian dan pembahasan mengenai optimasi nilai K pada algoritma KNN menggunakan metode grid search cv didapatkan nilai K paling optimal yaitu 3 dengan tingkat akurasi 96%. Oleh karena itu, nilai K=3 sangat baik diterapkan pada algoritma KNN untuk memprediksi kanker paru-paru karena memiliki akurasi yang tinggi.
Analisa Perbandingan Algoritma CNN dan LSTM untuk Klasifikasi Pesan Cyberbullying pada Twitter Radjavani, Alifqi; Bayu Sasongko, Theopilus
The Indonesian Journal of Computer Science Vol. 12 No. 4 (2023): The Indonesian Journal of Computer Science (IJCS)
Publisher : AI Society & STMIK Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33022/ijcs.v12i4.3287

Abstract

Dengan meningkatnya penggunaan sosial media, cyberbullying telahmencapai titik puncak sepanjang masa. Anonimitas pada internet membuatcyberbullying sangat merusak, dikarenakan korban akan merasa jika tiadajalan keluar dari pelecehan tersebut. Setiap individu harus selalu waspadaterhadap cyberbullying dan dihimbau untuk selalu melindungi diri sendiribeserta orang lain dari hal ini. Pada kasus ini, penulis membuat model yangsecara otomatis akan menandai tweet yang berpotensi membahayakan sertamemecah pola pesan kebencian tersebut. Dataset yang disediakan olehpenulis berisi sekitar 48.000 tweet yang telah dilabeli sesuai dengan jenis dandata-data tersebut telah diseimbangkan dan berisi sekitar 8000 data.Penelitian ini membandingkan algoritma Convolutional Neural Networkdengan Long Short-Term Memory untuk menentukan algoritma terbaik untukdataset pada penelitian ini. Berdasarkan hasil penelitian yang sudahdilakukan disimpulkan jika Long Short-Term Memory adalah algoritmaterbaik dengan f1-score 83.09%.