Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : Malcom: Indonesian Journal of Machine Learning and Computer Science

Fuzzy Clustering-Based Grouping for Mapping the Distribution of Student Success Data Mustakim, Mustakim; Aini, Delvi Nur; Batubara, Ana Uzla; Erkamim, Moh.; Legito, Legito
MALCOM: Indonesian Journal of Machine Learning and Computer Science Vol. 3 No. 2 (2023): MALCOM October 2023
Publisher : Institut Riset dan Publikasi Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.57152/malcom.v3i2.1227

Abstract

Learning activities are the main activity in the overall teaching and learning process in schools. This is because whether or not the achievement of educational goals depends on how the learning process is carried out by students. The uneven level of student success in learning is one of the problems in the school's efforts to realize the vision and mission of SMKN 5 Pekanbaru in preparing skilled graduates to be able to work in certain sectors by the public interest and the industrial world. In this study, mapping and grouping student grade data was carried out using the Fuzzy C-Means algorithm to provide information to the school in making the right decisions and optimizing the learning process. Furthermore, clustering was carried out in several experiments K=3 to K=7, and obtained the best validity value tested with the Silhouette Index of 0.4277 located at K=5. Then the distribution of cluster 5 on student score data was obtained with details, namely cluster 1 with a capacity of 1 student, cluster 2 with a capacity of 27 students, cluster 3 with a capacity of 1 student, cluster 4 with a capacity of 10 students, cluster 5 with a capacity of 23 students.
Implementasi Algoritma Naïve Bayes Classifier dan K-Nearest Neighbor untuk Klasifikasi Penyakit Ginjal Kronik: Implementation of Naïve Bayes Classifier and K-Nearest Neighbor Algorithms for Chronic Kidney Disease Classification Wulandari, Vina; Sari, Windy Junita; Alfian, Zhevin; Legito, Legito; Arifianto, Teguh
MALCOM: Indonesian Journal of Machine Learning and Computer Science Vol. 4 No. 2 (2024): MALCOM April 2024
Publisher : Institut Riset dan Publikasi Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.57152/malcom.v4i2.1229

Abstract

Ginjal adalah salah satu organ vital yang memiliki peranan sangat penting dalam tubuh dan memiliki fungsi untuk menjaga keseimbangan metabolishme tubuh dengan mengeluarkan racun dari dalam tubuh dan limbah metabolisme dalam bentuk urine. Penyakit ginjal kronik ialah kondisi di mana ginjal mengalami penurunan fungsi yang berlangsung dalam jangka waktu yang lama. Jumlah nilai prelevansi penderita PGK di Indonesia yang terbilang besar. Oleh karena itu dilakukan klasifikasi Penyakit ginjal kronik dengan algoritma Naïve Bayes Classifier (NBC) dan K- nearest Neighbor (KNN) yang mempunyai nilai akurasi yang baik. Berdasarkan Hasil penelitian yang diperoleh klasifikasi PGK menggunakan algoritma NBC memiliki akurasi sebesar 94,25%, rata-rata nilai recall 94,23%, presisi 98,40% dan AUC 0,961, Sedangkan klasifikasi menggunakan algoritma KNN memiliki akurasi sebesar 77,79%, recall 95,06%, presisi 80,20% dan AUC sebesar 0,627. Dari kedua hasil menunjukan bahwa klasifikasi menggunakan algoritma NBC lebih baik dibanding  menggunakan algoritma KNN.