Claim Missing Document
Check
Articles

Found 10 Documents
Search

PENGEMBANGAN MEDIA PEMBELAJARAN BERBASIS WHATSAPP UNTUK MENINGKATKAN HASIL BELAJAR AKIDAH AKHLAK PADA SISWA KELAS XI DI MAN 2 LAHAT Taufik, Rahman; Badrut, Muhammad
TEKNO AULAMA Vol. 1 No. 2 (2021): Agustus, Tekno Aulama: Jurnal Teknologi Pendidikan Islam
Publisher : Sekolah Pascasarjana Institut Agama Islam Al-Azhaar

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (379.78 KB) | DOI: 10.53888/teknoaulama.v1i2.443

Abstract

Media pembelajaran berbasis whatsapp adalah media yang digunakan sebagai alat bantu dalam proses pembelajaran serta sarana pembawa pesan dari sumber belajar kepenerima pesan belajar (siswa). Penelitian ini merupakan upaya untuk mengetahui "Penggunaan Media Pembelajaran Berbasis Whatsapp Untuk Meningkatkan Hasil Belajar Akidah Akhlak Pada Siswa Kelas X Di MAN 1 Lahat". Pertanyaan utama yang ingin dijawab dalam penelitian ini adalah "Bagaimana peningkatan hasil belajar siswa pada mata pelajaran Akidah Akhlak di Kelas X MAN 1 Lahat setelah menggunakan media pembelajaran berbasis WhatsApp?" Teknik pengumpulan data pada penelitian ini menggunakan adalah angket, soal tes metode dokumentasi, dan metode observasi. Subjek penelitian sebanyak 25 responden, menggunakan teknik sampel. Pengumpulan data menggunakan instrumen kuesioner untuk menjaring data X dan data Y. Hasil penelitian ini adalah Analisis data yang didapat dari rumus product moment menunjukkan bahwa ada perbedaan yang signifikan (5%) antara sebelum dan setelah menggunakan media pembelajaran” dapat diterima atau dapat dibuktikan. Dengan demikian, dapat disimpulkan bahwa ada peningkatan yang signifikan dari hasil belajar siswa Kelas X MAN 1 Lahat setelah menggunakan media pembelajaran berbasis whatsapp. Ini berarti semakin tinggi / semakin sering guru melakukan pengembangan terhadap media pembelajaran, maka akan semakin meningkat pula hasil belajar siswa Kelas X MAN 1 Lahat.
The Effectiveness of Online Learning With E-Learning Madrasah at MA Muhammadiyah Nangahure Taufik, Rahman
EDUCTUM: Journal Research Vol. 1 No. 1 (2022): EDUCTUM: Journal Research
Publisher : Lembaga Riset Mutiara Akbar

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (183.983 KB) | DOI: 10.56495/ejr.v1i1.310

Abstract

This study aims to determine the effectiveness of online learning using Madrasahi E-Learning Media MA Muhammadiyah Nangahure. This research method uses qualiative research by explaining the data obtained from the results of the effectiveness of online learning using madrasa e-learning. Data collection techniques using interviews obtained directly from informants (primary sources). The sampling technique is carried out by the random sampling method where each informant from the population has the same opportunity to choose a sample. The results showed that learning using madrasa e-learning is quite effective to implement. Although there are still obstacles encountered when learning using madrasa e-learning such as network constraints or locations that are not reached by networks, but all parties try their best to work on so that the obstacles can be overcome.
Enhancing Inventory and Transaction Management with Integrated E-Commerce Solutions: A Case Study of Desasa Home Decor Utami, Yohana Tri; Faradila, Dita; Ramadhanti, Karina Adityas; Muhaqiqin; Taufik, Rahman
Tech-E Vol. 8 No. 2 (2025): TECH-E (Technology Electronic)
Publisher : Fakultas Sains dan Teknologi-Universitas Buddhi Dharma

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31253/te.v8i2.3168

Abstract

Esasa Home Decor is a store that specializes in selling various types of artificial flower home decorations. The use of information technology in data management is essential to ensure that inventory and transaction management are conducted swiftly and generate accurate reports. This system is integrated with the Shopee API to automatically retrieve product and transaction data. This integration allows for better monitoring of stock levels and transactions on the e-commerce platform, ensuring that the information remains up-to-date. The development method used in this study is Extreme Programming, which emphasizes close collaboration within the team and continuous testing to produce high-quality software. Data collection was conducted through interviews, analysis, and direct observation of the ongoing business processes at Esasa Home Decor. The result of this research is a management information system that facilitates store management and is integrated with the Shopee e-commerce platform. The User Acceptance Testing (UAT) yielded a score of 97.714%, indicating that the system is highly suitable for use. Additionally, the Black-Box testing concluded that the system functions as expected and according to plan. Thus, this system enhances the operational efficiency of Esasa Home Decor by streamlining inventory and transaction management while providing more accurate and timely reports.
Implementation of Black-Box Testing on the Information System for the Smart Indonesia Card College Recommendation Sholehurrohman, Ridho; Qurrota A’yuni, Salsabila; Sakethi, Dwi; Sabda Ilman, Igit; Muhaqiqin, Muhaqiqin; taufik, rahman
JESII: Journal of Elektronik Sistem InformasI Vol 3 No 1 (2025): JOURNAL ELEKTRONIK SISTEM INFORMASI (JUNE)
Publisher : Departement Information Systems Universitas Kebangsaan Republik Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31848/jesii.v3i1.4038

Abstract

Testing on a system is carried out to determine whether a system that is built will run properly or if there are still bugs or errors that must be fixed. There are many methods in testing a system or software, one that is widely used by testers is the Black-box testing method. In this study the software that will be tested is an information system for the Smart Indonesia Card (KIP) Lecture Movement Ayo Lecture (GAK) recommendation information system. This information system is a system intended to provide information about the GAK program. In addition, this system is also expected to help optimize business processes in selecting applicants for KIP Lecture recommendations later. In implementing the GAK system, it is first necessary to test the system. System testing is one of the stages that cannot be eliminated in the development of a software. In testing, this system is tested using Black Box Testing in the hope of minimizing errors and ensuring that the system built has results that are in accordance with what is expected. With this test, it is expected that the quality of the software produced is in accordance with the expected function. Black-Box Testing, KIP College Recommendation, GAK Program, Information Systems
A hybrid model to mitigate data gaps and fluctuations in tax revenue forecasting Taufik, Rahman; Aristoteles, Aristoteles; Ilman, Igit Sabda
International Journal of Electrical and Computer Engineering (IJECE) Vol 15, No 4: August 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v15i4.pp4099-4108

Abstract

This study addresses the critical challenge of advancing tax revenue forecasting models to effectively handle distinctive data gaps and inherent fluctuations in tax revenue data. These challenges are evident in Lampung Province, Indonesia, where limited temporal granularity and non-linear variability hinder accurate fiscal planning. Despite advancements in statistical, machine learning, and hybrid approaches, existing models often fall short in simultaneously managing these challenges. A hybrid model integrating random forest regressors for data interpolation and Long Short-Term Memory for capturing complex temporal patterns was proposed. The model was evaluated, achieving an R² of 0.86, root mean squared error (RMSE) of 9.65 billion, and mean absolute percentage error (MAPE) of 3.49%. Although the model has limitations in generalizing to unseen data, the results demonstrate that it outperforms existing forecasting models regarding accuracy and reliability. Integrating random forest regressors and long short-term memory delivers a tailored solution to the complexities of tax revenue forecasting, contributing to fiscal forecasting and setting a foundation for further exploration into hybrid approaches.
Pengembangan Sistem Manajemen Gudang dengan Integrasi QR Code Real-time berbasis Full-Stack Javascript Taufik, Rahman; Febrianto, Rifqi; Sabda Ilman, Igit; Muhaqiqin; Sholehurrohman, Ridho
Informatik : Jurnal Ilmu Komputer Vol 21 No 2 (2025): Agustus 2025
Publisher : Fakultas Ilmu Komputer

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52958/iftk.v21i2.11319

Abstract

Perusahaan sering menghadapi tantangan dalam pengelolaan stok dan ketersediaan barang akibat pencatatan yang tidak terorganisir. Untuk mengatasi masalah belum adanya pendekatan sistem manajemen gudang yang adaptif dan real-time berbasis framework, penelitian ini bertujuan mengembangkan sistem manajemen gudang terintegrasi dengan QR Code real-time. Pada studi ini, sistem dibangun menggunakan JavaScript framework (ReactJS, NodeJS, ExpressJS) dan dikembangkan menggunakan metodologi Scrum. Hasil evaluasi menunjukkan kinerja sistem yang baik dalam pengelolaan data, akurasi laporan, dan kemudahan transaksi. Meskipun fitur QR Code memerlukan optimasi lebih lanjut pada aspek aksesibilitas dan penggunaan real-time, sistem ini mampu meningkatkan akurasi dan efisiensi pengelolaan gudang, serta mempermudah pelacakan barang. Pengembangan selanjutnya dapat berfokus pada penyempurnaan fitur QR Code dan eksplorasi integrasi yang lebih luas.
An Exploration of TensorFlow-Enabled Convolutional Neural Network Model Development for Facial Recognition: Advancements in Student Attendance System Irawati, Anie Rose; Kurniawan, Didik; Utami, Yohana Tri; Taufik, Rahman
Scientific Journal of Informatics Vol. 11 No. 2: May 2024
Publisher : Universitas Negeri Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15294/sji.v11i2.3585

Abstract

Purpose: Face recognition has become an increasingly intriguing field in artificial intelligence research. In this study,   This study aims to explore the application of CNNs, implemented through TensorFlow, to develop a robust model for enhancing facial recognition accuracy in student attendance systems. The focus of this research is the development of a model capable of recognizing student faces under various lighting conditions and poses in an academic environment, using a multi-class dataset of student images collected from internship attendance records at the Computer Science Department. Methods: The dataset, comprising facial images from 19 students, served as the foundation for training and validating the CNN model. The dataset, sourced from the computer science department's internship attendance records, included a total of 231 images for training and 59 images for validation. The preprocessing phase included facial area detection and categorization, resulting in a well-organized dataset for training and validation. The CNN architecture, consisting of seven layers, was meticulously designed to achieve optimal performance. Result: The model exhibited exceptional accuracy, reaching 93% on the validation dataset after 300 training epochs. Precision, recall, and F1-score metrics were employed for a detailed evaluation across diverse classes, highlighting the model's proficiency in accurately categorizing facial images. Comparative analyses with a VGG-16-based model showcased the superiority of the proposed CNN architecture. Moreover, the implementation of a web service demonstrated the practical applicability of the model, providing accurate predictions with a remarkable response time of less than 0.3 seconds. Novelty: This comprehensive study not only advances face recognition technology but also presents a model applicable to real-world scenarios, particularly in student attendance systems.
Analisis Informasi Jaringan Homogen dan Heterogen pada Liga Champions UEFA Taufik, Rahman; Muhaqiqin, Muhaqiqin; Ilman, Igit Sabda; Sholehurrohman , Ridho
Jurnal Ilmu Siber dan Teknologi Digital Vol. 1 No. 2 (2023): Mei
Publisher : Penerbit Goodwood

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35912/jisted.v1i2.1928

Abstract

Purpose: The interpretation of network analysis research can be challenging today. The aim of this study is to analyze the homogeneous and the heterogeneous network information that occurred in the UEFA Champions League 2017-2018. Research Methodology: To obtain an interpretation of the results of network information analysis, centrality measurements and community detection were performed, where the centrality measurements methods used are Degree centrality, Betweenness centrality, Eigencentrality, PageRank, while community detection method used is performed using the Louvain. Result: The homogenous and heterogeneous network analysis was conducted using dataset of 17980 players, 32 teams, and 128 matches in Champions League 2017-2018. In this analysis, homogenous and heterogeneous network schemes were used to represent objects and relationships between objects in the network. The analysis was based on centrality measurements to identify influential nodes and community emergence within the network. The result is an interpretation of network analysis in the form of information about the roles of players, teams, countries, locations, formations, and skills that affect the performance of UEFA Champions League. Limitation: the use of diverse data sources, the application or development of data analysis techniques, and the formation of a broader network scheme Contribution: Obtaining information related to the UEFA Champions League based on the interpretation result of the analysis of homogeneous and heterogeneous networks
Performance Comparison Between LeNet And MobileNet In Convolutional Neural Network for Lampung Batik Image Identification Andrian, Rico; Herwanto, Hans Christian; Taufik, Rahman; Kurniawan, Didik
Scientific Journal of Informatics Vol 11, No 1 (2024): February 2024
Publisher : Universitas Negeri Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15294/sji.v11i1.49451

Abstract

Purpose: The rich cultural heritage of Indonesia includes the intricate art of batik, which varies across regions with unique patterns and motifs. This study focuses on Lampung batik, a distinctive type of batik, representing Lampung Province, Indonesia. Leveraging Convolutional Neural Network (CNN) architectures, namely LeNet-5 and MobileNet, the research compares their effectiveness in recognizing and classifying Lampung batik motifs. Data augmentation techniques, including rotation, brightness, and zoom, were employed to enhance the dataset and improve model performance.Methods: The study collected 500 Lampung batik images categorized into 10 classes which were then augmented and divided into training, validation, and testing sets. The model was created using a Deep Learning approach, LeNet And MobileNet. Both models were trained using identical hyperparameters and evaluated based on their accuracy in classifying Lampung batik motifs.Results: The results demonstrate an accuracy of 99.33% for LeNet-5 and 98.00% for MobileNet, outperforming previous studies. LeNet-5, particularly with augmentation, exhibited superior precision and recall in classifying Lampung batik motifs. This research underscores the efficacy of CNN architectures, coupled with data augmentation techniques, in accurately identifying intricate cultural artifacts like Lampung batik.Novelty: The Dharmagita learning model using a mobile application is a new model that has not existed before.
PENGEMBANGAN MEDIA PEMBELAJARAN BERBASIS WHATSAPP UNTUK MENINGKATKAN HASIL BELAJAR AKIDAH AKHLAK PADA SISWA KELAS XI DI MAN 2 LAHAT Taufik, Rahman; Badrut, Muhammad
TEKNO AULAMA: Jurnal Teknologi Pendidikan Islam Vol 1 No 2 (2021): Agustus, Tekno Aulama: Jurnal Teknologi Pendidikan Islam
Publisher : Universitas Islam Nusantara Al-Azhaar Lubuklinggau

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.53888/teknoaulama.v1i2.443

Abstract

Media pembelajaran berbasis whatsapp adalah media yang digunakan sebagai alat bantu dalam proses pembelajaran serta sarana pembawa pesan dari sumber belajar kepenerima pesan belajar (siswa). Penelitian ini merupakan upaya untuk mengetahui "Penggunaan Media Pembelajaran Berbasis Whatsapp Untuk Meningkatkan Hasil Belajar Akidah Akhlak Pada Siswa Kelas X Di MAN 1 Lahat". Pertanyaan utama yang ingin dijawab dalam penelitian ini adalah "Bagaimana peningkatan hasil belajar siswa pada mata pelajaran Akidah Akhlak di Kelas X MAN 1 Lahat setelah menggunakan media pembelajaran berbasis WhatsApp?" Teknik pengumpulan data pada penelitian ini menggunakan adalah angket, soal tes metode dokumentasi, dan metode observasi. Subjek penelitian sebanyak 25 responden, menggunakan teknik sampel. Pengumpulan data menggunakan instrumen kuesioner untuk menjaring data X dan data Y. Hasil penelitian ini adalah Analisis data yang didapat dari rumus product moment menunjukkan bahwa ada perbedaan yang signifikan (5%) antara sebelum dan setelah menggunakan media pembelajaran” dapat diterima atau dapat dibuktikan. Dengan demikian, dapat disimpulkan bahwa ada peningkatan yang signifikan dari hasil belajar siswa Kelas X MAN 1 Lahat setelah menggunakan media pembelajaran berbasis whatsapp. Ini berarti semakin tinggi / semakin sering guru melakukan pengembangan terhadap media pembelajaran, maka akan semakin meningkat pula hasil belajar siswa Kelas X MAN 1 Lahat.