Claim Missing Document
Check
Articles

KONVERSI DATA KE FORMAT DNA DAN PERBANDINGAN HASIL KOMPRESINYA MENGGUNAKAN GENCOMPRESS TERHADAP WINRAR Heilbert Armando Mapaly; Teguh Bharata Adji; Noor Akhmad Setiawan
Jurnal Teknomatika Vol 6 No 1 (2013): TEKNOMATIKA
Publisher : Fakultas Teknik dan Teknologi Informasi, Universitas Jenderal Achmad Yani Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Teknik kompresi data saat ini merupakan hal yang penting dalam menyimpan media dalam bentuk digital. Secara umum, teknik kompresi terbagi menjadi lossy compression dan loseless compression. Penelitian ini mencoba untuk menerapkan konsep kompresi DNA yang bersifat loseless. Karena DNA hanya terdiri dari huruf a, c, g, dan t, maka kompresi ini hanya dapat diaplikasikan pada media teks, padahal, media yang ada saat ini tidak hanya berupa teks saja. Oleh sebab itu penelitian ini bertujuan untuk menemukan cara agar kompresi tersebut dapat diaplikasikan pada media lain serta membandingkan hasil kompresi tersebut dengan aplikasi WinRAR. Untuk dapat dikompresi dengan teknik kompresi DNA, semua file tersebut harus dikonversikan ke dalam bentuk DNA. Proses konversi tersebut dilakukan dengan mengubah kode binary yang ada pada file menjadi untaian rantai DNA. 00 diubah menjadi ‘a’, 01 diubah menjadi ‘c’, 10 diubah menjadi ‘g’ dan 11 diubah menjadi ‘t’. Walaupun pada konversi data ke format DNA ukuran file DNA menjadi lebih besar dari file awal, namun ukuran file hasil kompresi menjadi lebih kecil dari ukuran file awal karena memanfaatkan kelebihan teknik kompresi DNA. Ukuran file hasil kompresi dengan GenCompress menunjukkan hasil yang lebih baik dari WinRAR ketika terdapat pengulangan dengan jumlah yang sama pada isi file.
Point of Interest (POI) Recommendation System using Implicit Feedback Based on K-Means+ Clustering and User-Based Collaborative Filtering Sulis Setiowati; Teguh Bharata Adji; Igi Ardiyanto
Computer Engineering and Applications Journal Vol 13 No 1 (2024)
Publisher : Universitas Sriwijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18495/comengapp.v13i1.388

Abstract

Recommendation system always involves huge volumes of data, therefore it causes the scalability issues that do not only increase the processing time but also reduce the accuracy. In addition, the type of data used also greatly affects the result of the recommendations. In the recommendation system, there are two common types of data namely implicit (binary) rating and explicit (scalar) rating. Binary rating produces lower accuracy when it is not handled with the properly. Thus, optimized K-Means+ clustering and user-based collaborative filtering are proposed in this research. The K-Means clustering is optimized by selecting the K value using the Davies-Bouldin Index (DBI) method. The experimental result shows that the optimization of the K values produces better clustering than Elbow Method. The K-Means+ and User-Based Collaborative Filtering (UBCF) produce precision of 8.6% and f-measure of 7.2%, respectively. The proposed method was compared to DBSCAN algorithm with UBCF, and had better accuracy of 1% increase in precision value. This result proves that K-Means+ with UBCF can handle implicit feedback datasets and improve precision.
Comparison of Distributed K-Means and Distributed Fuzzy C-Means Algorithms for Text Clustering Agastya, I Made Artha; Adji, Teguh Bharata; Setiawan, Noor Akhmad
Communications in Science and Technology Vol 2 No 1 (2017)
Publisher : Komunitas Ilmuwan dan Profesional Muslim Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21924/cst.2.1.2017.46

Abstract

Text clustering has been developed in distributed system due to increasing data. The popular algorithms like K-Means (KM) and Fuzzy C-Means (FCM) are combined with MapReduce algorithm in Hadoop Environment to be distributable and parallelizable. The problem is performance comparison between Distributed KM (DKM) and Distributed FCM (DFCM) that use Tanimoto Distance Measure (TDM) has not been studied yet. It is important because TDM’s characteristics are scale invariant while allowing discrimination collinear vectors. This work compared the combination of TDM with DKM (DKM-T) and TDM with DFCM (DFCM-T) to acquire performance of both algorithms. The result shows that DFCM-T has better intra-cluster and inter-cluster densities than those of DKM-T. Moreover, DFCM-T has lower processing time than that of DKM-T when total nodes used are 4 and 8. DFCM-T and DKM-T could perform clustering of 1,400,000 text files in 16.18 and 9.74 minutes but the preprocessing times take hours.
Improving multi-class EEG-motor imagery classification using two-stage detection on one-versus-one approach Wijaya, Adi; Adji, Teguh Bharata; Setiawan, Noor Akhmad
Communications in Science and Technology Vol 5 No 2 (2020)
Publisher : Komunitas Ilmuwan dan Profesional Muslim Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21924/cst.5.2.2020.216

Abstract

The multi-class motor imagery based on Electroencephalogram (EEG) signals in Brain-Computer Interface (BCI) systems still face challenges, such as inconsistent accuracy and low classification performance due to inter-subject dependent. Therefore, this study aims to improve multi-class EEG-motor imagery using two-stage detection and voting scheme on one-versus-one approach. The EEG signal used to carry out this research was extracted through a statistical measure of narrow window sliding. Furthermore, inter and cross-subject schemes were investigated on BCI competition IV-Dataset 2a to evaluate the effectiveness of the proposed method. The experimental results showed that the proposed method produced enhanced inter and cross-subject kappa coefficient values of 0.78 and 0.68, respectively, with a low standard deviation of 0.1 for both schemes. These results further indicated that the proposed method has an ability to address inter-subject dependent for promising and reliable BCI systems.
Point of Interest (POI) Recommendation System using Implicit Feedback Based on K-Means+ Clustering and User-Based Collaborative Filtering Setiowati, Sulis; Adji, Teguh Bharata; Ardiyanto, Igi
Computer Engineering and Applications Journal (ComEngApp) Vol. 11 No. 2 (2022)
Publisher : Universitas Sriwijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Recommendation system always involves huge volumes of data, therefore it causes the scalability issues that do not only increase the processing time but also reduce the accuracy. In addition, the type of data used also greatly affects the result of the recommendations. In the recommendation system, there are two common types of data namely implicit (binary) rating and explicit (scalar) rating. Binary rating produces lower accuracy when it is not handled with the properly. Thus, optimized K-Means+ clustering and user-based collaborative filtering are proposed in this research. The K-Means clustering is optimized by selecting the K value using the Davies-Bouldin Index (DBI) method. The experimental result shows that the optimization of the K values produces better clustering than Elbow Method. The KMeans+ and User-Based Collaborative Filtering (UBCF) produce precision of 8.6% and f-measure of 7.2%, respectively. The proposed method was compared to DBSCAN algorithm with UBCF, and had better accuracy of 1% increase in precision value. This result proves that K-Means+ with UBCF can handle implicit feedback datasets and improve precision.