Claim Missing Document
Check
Articles

Found 3 Documents
Search

Corrosion behavior of super austenitic stainless steel, Duplex 2205 and 316L in sulfamic acid environment Roszardi, Bashari Rohululloh; Riastuti, Rini; Budiarto, Wahyu; Darsono, Nono; Syahid, Adi Noer
Jurnal Pendidikan Teknologi Kejuruan Vol 4 No 4 (2021): Regular Issue
Publisher : Universitas Negeri Padang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24036/jptk.v4i4.24323

Abstract

Currently, sulfamic acid as a primary chemical industrial material is ubiquitous. One of its uses is a sweetener. Due to its corrosive nature, it is necessary to use a suitable container to avoid contamination of the solution. Corrosion behavior of super austenitic stainless steel, duplex 2205, and 316L uncovered to sulfamic acid in diverse attention at ambient temperature had been investigated. Concentration Weight loss method, Potentiodynamic Polarization, and Electrochemical Impedance Spectroscopy (EIS) examined the corrosion rate. The result showed that the corrosion rate of material increased with the increasing concentration of sulfamic acid. Super austenitic stainless steel has higher corrosion resistance than duplex 2205 and 316L.
Kinetic of Dissolution of Nickel Limonite Calcine by Sulfuric Acid Solution Setiawan, Iwan; Nabilah, Annisa; Oediyani, Soesaptri; Subagja, Rudi; Irawan, Januar; Sampoerno, Arief Budi; Yunita, Fariza Eka; Suharyanto, Ariyo; Syahid, Adi Noer
Metalurgi Vol 38, No 3 (2023): Metalurgi Vol. 38 No. 3 2023
Publisher : National Research and Innovation Agency (BRIN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.55981/metalurgi.2023.740

Abstract

Currently, more than 60% of nickel processing is carried out using nickel sulfide as a raw material. Nonetheless, due to the depletion reserves of nickel sulphide, nickel laterite has drawn a lot of interest to be processed as raw material. Nickel laterite in Indonesia is generally found in low grades, with nickel concentration of <1.15%. One method of treating nickel limonite is leaching in a sulfuric acid solution. This study aims to determine the reaction rate in the leaching process of calcine nickel limonite and the effect of sulfuric acid concentration and leaching temperature on the percent nickel extraction. In this research, the limonite ore from Pomalaa, Southeast Sulawesi, Indonesia, which has undergone a reduction process, was used as raw material. This research was conducted by leaching method on nickel limonite calcine using sulfuric acid reagent with 0.2, 0.5, and 1 M concentration variation, temperature variations of 60, 70, and 90°C, stirring speed 500 rpm, and %S/L (w/w) 10%. In this leaching research, the activation energy obtained at a sulfuric acid concentration of 0.2, 0.5, and 1 M are 13,7379 kJ/mol, 19,7582 kJ/mol, 20,3161 kJ/mol, respectively. The leaching process of nickel limonite calcine was controlled by diffusion. The optimum nickel extraction percentage in this study was 97.45%, obtained at a concentration of 1 M sulfuric acid, temperature of 70 °C, and leaching time of 240 minutes.
IRON REMOVAL PROCESS FROM NICKEL PREGNANT LEACH SOLUTION USING SODIUM HYDROXIDE Zunaidi, Mochamad Afriansyah; Setiawan, Iwan; Oediyani, Soesaptri; Irawan, Januar; Rhamdani, Ahmad Rizky; Syahid, Adi Noer
Metalurgi Vol 37, No 3 (2022): Metalurgi Vol. 37 No. 3 Desember 2022
Publisher : National Research and Innovation Agency (BRIN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1538.744 KB) | DOI: 10.14203/metalurgi.v37i3.665

Abstract

Indonesia is a country that has abundant mineral resources, including nickel resources in laterite ore. Nickel demand has risen significantly because of the need for nickel precursors for battery production. Nickel laterite can be processed via the hydrometallurgical route to obtain nickel precursor by leaching the laterite ore with an acid solution to produce a nickel-rich solution or Pregnant Leach Solutions (PLS). This nickel-rich solution is then processed by precipitation with a base solution to make its hydroxides known as Mixed Hydroxides Precipitate (MHP). MHP is the main product that contains nickel and cobalt for making the material for a lithium battery. PLS usually contain iron impurity, which also dissolves when the ore is leached. Therefore, the iron needs to be separated to make high-purity MHP. To solve this problem, synthetic PLS contained nickel, cobalt, and iron, and their concentration was simulated to match the general PLS composition. From the experiment, it was observed that iron could be precipitated at two stages at solution pH of 3 and 3.5 using 2.5 M NaOH solution. After that, nickel and cobalt can be precipitated at higher pH. To study the effect of pH and temperature on the yield of nickel and cobalt precipitation, precipitation at pH of 7, 8, and 9; and temperature of 70, 80, and 90 °C was conducted. The results show that the highest yield was obtained at a pH of 9 and temperature of 90 °C, with precipitation yield of nickel and cobalt at 99.03% and 98.78%, respectively.