p-Index From 2020 - 2025
0.408
P-Index
This Author published in this journals
All Journal Metalurgi
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Kinetic of Dissolution of Nickel Limonite Calcine by Sulfuric Acid Solution Setiawan, Iwan; Nabilah, Annisa; Oediyani, Soesaptri; Subagja, Rudi; Irawan, Januar; Sampoerno, Arief Budi; Yunita, Fariza Eka; Suharyanto, Ariyo; Syahid, Adi Noer
Metalurgi Vol 38, No 3 (2023): Metalurgi Vol. 38 No. 3 2023
Publisher : National Research and Innovation Agency (BRIN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.55981/metalurgi.2023.740

Abstract

Currently, more than 60% of nickel processing is carried out using nickel sulfide as a raw material. Nonetheless, due to the depletion reserves of nickel sulphide, nickel laterite has drawn a lot of interest to be processed as raw material. Nickel laterite in Indonesia is generally found in low grades, with nickel concentration of <1.15%. One method of treating nickel limonite is leaching in a sulfuric acid solution. This study aims to determine the reaction rate in the leaching process of calcine nickel limonite and the effect of sulfuric acid concentration and leaching temperature on the percent nickel extraction. In this research, the limonite ore from Pomalaa, Southeast Sulawesi, Indonesia, which has undergone a reduction process, was used as raw material. This research was conducted by leaching method on nickel limonite calcine using sulfuric acid reagent with 0.2, 0.5, and 1 M concentration variation, temperature variations of 60, 70, and 90°C, stirring speed 500 rpm, and %S/L (w/w) 10%. In this leaching research, the activation energy obtained at a sulfuric acid concentration of 0.2, 0.5, and 1 M are 13,7379 kJ/mol, 19,7582 kJ/mol, 20,3161 kJ/mol, respectively. The leaching process of nickel limonite calcine was controlled by diffusion. The optimum nickel extraction percentage in this study was 97.45%, obtained at a concentration of 1 M sulfuric acid, temperature of 70 °C, and leaching time of 240 minutes.
A Preliminary Study of Cobalt Solvent Extraction from Nickel Sulphate Solution Using Organic Extractant-PC-88A Subagja, Rudi; Rohman, Arief Dwi; Milandia, Anistasia; Oediyani, Soesaptri; Setiawan, Iwan
Metalurgi Vol 38, No 1 (2023): Metalurgi Vol. 38 No. 1 2023
Publisher : National Research and Innovation Agency (BRIN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (625.14 KB) | DOI: 10.55981/metalurgi.2023.684

Abstract

In present study, a solvent extraction experiment has been done to separate cobalt from the nickel sulfate solution by using 2-ethythexyl phosponic acid mono-2-ethylhexyl ester (PC-88A) as extractant. The experiment was carried out on a laboratory scale by using a separating funnel to extract cobalt from the nickel sulfate solution with PC88A. The mixed solution was shake in separating funnel for a specified period of time, and after the solvent extraction experiment was finished the organic phase PC88 was separated from the nickel sulfate solution by decantation. The nickel and cobalt content in the aqueous nickel sulfate solution were then analyzed using Atomic absorption spectrophotometry (AAS). In this experiment, the variable for  experiments were covering  solution pH from 2 to 6, shaking time from 30 minutes to 120 minutes, shaking speed  from 20 revolutions per minute (rpm) to 80 rpm, and the volumeratio  of aqueous to organic phase  (A:O ratio) was from 1:1  to 1:4. The effects that experimental variables to the cobalt extraction were observed in this experiment. The result of experiment at room temperature, solution pH 5, shaking speed  60 rpm,  shaking time  90 minutes,  A:O ratio  1:4 and  concentration of PC- 88A  40% show  97.21% of cobalt can be extracted by PC-88A from nickel sulfate solution, thererfore it was  necessary to conduct two stage extraction process  to extract 100% of the cobalt from the nickel sulfate solution.