Rayner Alfred
Faculty of Computing and Informatics, Jalan UMS, Universiti Malaysia Sabah, 88400 Kota Kinabalu, Malaysia

Published : 4 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 4 Documents
Search

Penerapan Jaringan Heuristik untuk Prediksi Persentase Distribusi Produk Domestik Bruto (PDB) Atas Dasar Harga Berlaku Menurut Lapangan Usaha Gaffar, Emmilya Umma Aziza; Gaffar, Achmad Fanany Onnilita; Alfred, Rayner; Gani, Irwan; Haviluddin, Haviluddin
Prosiding SAKTI (Seminar Ilmu Komputer dan Teknologi Informasi) Vol 3, No 1 (2018): Prosiding Seminar Nasional Ilmu Komputer dan Teknologi Informasi (SAKTI)
Publisher : Mulawarman University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (500.139 KB)

Abstract

Pertumbuhan ekonomi suatu negara diukur dengan tingkat pertumbuhan PDB yang sangat membantu untuk memprediksi situasi ekonomi dan pengembangan strategi pembangunan ekonomi. Pengukuran ini dapat dilakukan dengan menggabungkan konsep matematika komputasi dan teknologi komputer untuk menghasilkan prediksi pertumbuhan ekonomi secara ilmiah dan tepat. Metode statistik dan machine learning serta gabungan dari keduanya telah banyak digunakan untuk aktivitas prediksi maupun peramalan. Heuristik adalah salah satu filsafat ilmu pengetahuan dan matematika yang tergolong sebagai penalaran ampliatif, merupakan pendekatan pemecahan masalah, pembelajaran, atau penemuan yang menggunakan metode praktis yang tidak dijamin optimal atau sempurna, namun cukup signifikan untuk pencapaian tujuan, Di dalam studi ini, Jaringan Heuristik digunakan untuk memprediksi persentase distribusi PDB atas Harga Berlaku menurut Lapangan Usaha. Tujuan studi ini adalah melakukan prediksi secara simultan atas seluruh variabel lapangan usaha yang berkontribusi pada PDB. Hasil studi menunjukkan bahwa Jaringan Heuristik telah mampu melakukan prediksi dan peramalan secara optimal melalui proses komputasi yang cepat dengan hasil yang signifikan, serta menghasilkan error prediksi yang dapat diterima.
Big data: issues trends problems controversies in ASEAN perspective Haviluddin, Haviluddin; Alfred, Rayner
Bulletin of Social Informatics Theory and Application Vol. 3 No. 2 (2019)
Publisher : Association for Scientific Computing Electrical and Engineering

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31763/businta.v3i2.239

Abstract

Big Data has a characteristics is size, new opportunities and have the potential to transform corporations and government and its interactions with the public. This paper attempts to offer a broader definition of Big Data that captures it is other unique and defining characteristics. This paper presents a consolidated description of Big Data by integrating definitions from practitioners and academics. In addition, we summarize the issues, trends, problems and controversies related to Big Data (technology, applications, and people) from infrastructure (i.e., hardware and software), technology for Big Data Analytics (BDA), management, educational and scientists, and government-related to policies perspectives in order to support the Economic Community ASEAN (AEC) era.
An extraction of shapes and support vector machine methods for identification of decorative wall “Lamin” motifs of the Dayak Kenyah Pampang tribe Haviluddin, Haviluddin; Wati, Masna; Alfred, Rayner; Burhandenny, Aji Ery; Pratama, Arief Ardi
International Journal of Artificial Intelligence Research Vol 7, No 1 (2023): June 2023
Publisher : Universitas Dharma Wacana

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29099/ijair.v7i1.475

Abstract

One of the Dayak cultures of Kalimantan Island, Indonesia is a traditional house called Lamin where each wall is decorated according to tribal characteristics. This study aims to identify the image on the Lamin wall using the Support Vector Machine (SVM) method based on the eccentricity and metric parameter values. The data of this study consisted of 50 types of images of the Lamin wall motifs of the Dayak Kenyah tribe consisting of tebengaang, dragon, crocodile, tiger, and arch which were taken from the tourist village, Pampang, Samarinda, East Kalimantan. Based on the experiment, the shape feature extraction method has produced the highest value of the eccentricity parameter which is 0.6979 and the metric parameter is 0.9953 on the image of the arch. Motif identification using the SVM method using linear, Gaussian/RBF, and polynomial kernel parameters has resulted in the highest accuracy with 80% image composition of kernel polynomial at 85%, Gaussian/RBF at 80%, and linear at 78%.
An Inflation Rate Prediction Based on Backpropagation Neural Network Algorithm Purnawansyah, Purnawansyah; Haviluddin, Haviluddin; Setyadi, Hario Jati; Wong, Kelvin; Alfred, Rayner
International Journal of Artificial Intelligence Research Vol 3, No 2 (2019): December 2019
Publisher : Universitas Dharma Wacana

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1806.11 KB) | DOI: 10.29099/ijair.v3i2.112

Abstract

This article aims to predict the inflation rate in Samarinda, East Kalimantan by implementing an intelligent algorithm, Backpropagation Neural Network (BPNN). The inflation rate data was obtained from the Provincial Statistics Bureau of Samarinda https://samarindakota.bps.go.id/ for the period January 2012 to January 2017. The method used to measure accuracy algorithm prediction was the mean square error (MSE). Based on the experiment results, the BPNN method with architectural parameters of 5-5-5-1; the learning function was trainlm; the activation functions were logsig and purelin; the learning rate was 0.1 and able to produce a good level of prediction error with an MSE value of 0.00000424. The results showed that the BPNN algorithm can be used as an alternative method in predicting inflation rates in order to support sustainable economic growth, so that it can improve the welfare of the people in Samarinda, East Kalimantan.