Isye Arieshanti
Institut Teknologi Sepuluh Nopember

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

KLASIFIKASI CITRA BATIK MENGGUNAKAN METODE EKSTRAKSI CIRI YANG INVARIANT TERHADAP ROTASI Kurniawardhani, Arrie; Suciati, Nanik; Arieshanti, Isye
JUTI: Jurnal Ilmiah Teknologi Informasi Vol 12, No 2, Juli 2014
Publisher : Department of Informatics, Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (3771.41 KB) | DOI: 10.12962/j24068535.v12i2.a322

Abstract

Untuk membantu proses pendokumentasian citra Batik, dibutuhkan sistem klasifikasi yang cukup handal dalam mengklasifikasi dan mengidentifikasi citra Batik. Salah satu kehandalan sistem klasifikasi yang dibutuhkan adalah invariant terhadap rotasi. Kehandalan tersebut dibutuhkan agar sistem dapat diaplikasikan untuk mengenali citra dari berbagai macam sumber, seperti internet. Kehandalan sistem klasifikasi tidak lepas dari kehandalan metode ekstraksi cirinya. Salah satu metode ekstraksi ciri yang invariant terhadap rotasi adalah LBPROT. Namun, LBPROT memiliki kekurangan yaitu mengabaikan karakteristik lokal dari kekontrasan atau nilai varian. Di lain pihak, Completed Local Binary Pattern (CLBP) dan Completed Robust Local Binary Pattern (CRLBP) memiliki ciri yang dapat merepresentasikan nilai varian lokal tanpa mengabaikan struktur spasial lokal, yaitu ciri magnitude-nya, CLBP_M dan CRLBP_M. Oleh karena itu, pada penelitian kali ini diusulkan metode klasifikasi yang invariant terhadap rotasi, dengan menggunakan metode ekstraksi ciri yang menggabungkan kelebihan metode LBPROT dan CLBP_M (rotCLBP_M), atau LBPROT dan CRLBP_M (rotCRLBP_M). Hasil ekstraksi ciri akan menjadi data masukan untuk sistem klasifikasi Probabilistic Neural Network (PNN). Kinerja sistem diukur menggunakan akurasi. Hasil uji coba menunjukkan bahwa sistem klasifikasi dengan metode ekstraksi ciri rotCRLBP_M, lebih unggul dibandingkan dengan metode rotCLBP_M. Sistem klasifikasi dapat mencapai akurasi maksimal sebesar 90.34% untuk dataset Batik. Sedangkan pada dataset Brodatz, sistem klasifikasi dapat mencapai akurasi sebesar 87,92%.
DOTTED-BOARD MODEL DAN EXTENDED LOCAL SEARCH UNTUK OPTIMALISASI TATA LETAK POLA BUSANA PADA BAHAN BERMOTIF DENGAN MEMPERTIMBANGKAN ATURAN KESERASIAN MOTIF Bimantoro, Fitri; Suciati, Nanik; Arieshanti, Isye
JUTI: Jurnal Ilmiah Teknologi Informasi Vol 13, No 1, Januari 2015
Publisher : Department of Informatics, Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/j24068535.v13i1.a390

Abstract

Permasalahan peletakkan pola busana penting dilakukan untuk memperoleh efisiensi dalam penggunaan bahan kain.Tidak hanya itu, waktu pemrosesan dengan memperhatikan keserasian motif juga masih menjadi masalah yang belum terselesaikan. Permasalahan ini dikenal dengan irregular strip packing problem (SPP). Penelitian irregular SPP menggunakan bahan bermotif pernah dilakukan sebelumnya, namun tidak memperhatikan keserasian isi motif. Penelitian ini diusulkan untuk menyelesaikan irregular SPP pada bahan bermotif dengan mempertimbangkan keserasian isi motif. Metode yang diusulkan adalah Dotted Board Model (DBM) yang dikombinasikan dengan Extended Local Search (ELS). Pada tahap awal pola busana dibagi menjadi dua kelompok. Kelompok pola busana yang memiliki aturan keserasian mo-tif, dan kelompok pola busana yang tidak memiliki aturan keserasian motif. Selanjutnya, inisialisasi tata letak awal dil-akukan pada kelompok pola busana yang memiliki aturan keserasian motif menggunakan DBM. Selebihnya, pola busana tanpa aturan keserasian motif akan dioptimalisasi dengan menggunakan ELS. Setiap aturan keserasian memiliki poin yang digunakan sebagai tolak ukur keserasian motif. Berdasarkan ujicoba, kombinasi terbaik ELS+DBM terdapat pada resolusi 3 piksel dengan iterasi local search ke 5. Nilai efisiensi dan waktu ELS+DBM adalah 57% dan 381 detik. Waktu komputasi ELS+DBM lebih cepat dengan selisih waktu komputasi 392,7detik dibandingkan tanpa DBM. Hal ini menun-jukkan bahwa metode ELS+DBM lebih unggul dibandingkan ELS tanpa DBM, karena metode ELS+DBM memiliki waktu yang lebih singkat untuk mencapai nilai efisiensi yang hampir sama.