Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : International Journal of Electrical and Computer Engineering

Face Recognition Based on Symmetrical Half-Join Method using Stereo Vision Camera Edy Winarno; Agus Harjoko; Aniati Murni Arymurthy; Edi Winarko
International Journal of Electrical and Computer Engineering (IJECE) Vol 6, No 6: December 2016
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (435.818 KB) | DOI: 10.11591/ijece.v6i6.pp2818-2827

Abstract

The main problem in face recognition system based on half-face pattern is how to anticipate poses and illuminance variations to improve recognition rate. To solve this problem, we can use two lenses on stereo vision camera in face recognition system. Stereo vision camera has left and right lenses that can be used to produce a 2D image of each lens. Stereo vision camera in face recognition has capability to produce two of 2D face images with a different angle. Both angle of the face image will produce a detailed image of the face and better lighting levels on each of the left and right lenses. In this study, we proposed a face recognition technique, using 2 lens on a stereo vision camera namely symmetrical half-join. Symmetrical half-join is a method of normalizing the image of the face detection on each of the left and right lenses in stereo vision camera, then cropping and merging at each image. Tests on face recognition rate based on the variety of poses and variations in illumination shows that the symmetrical half-join method is able to provide a high accuracy of face recognition and can anticipate variations in given pose and illumination variations. The proposed model is able to produce 86% -97% recognition rate on a variety of poses and variations in angles between 0 °- 22.5 °. The variation of illuminance measured using a lux meter can result in 90% -100% recognition rate for the category of at least dim lighting levels (above 10 lux).
A non-negative matrix factorization based clustering to identify potential tuna fishing zones Devi Fitrianah; Hisyam Fahmi; Achmad Nizar Hidayanto; Pang Ning-Tan; Aniati Murni Arymurthy
International Journal of Electrical and Computer Engineering (IJECE) Vol 11, No 6: December 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v11i6.pp5458-5466

Abstract

Many nonnegative matrix factorization based clusterings are employed in discovering pattern and knowledge. Considering the sparseness nature of our data set about the daily tuna fishing data, we attempted to utilize a clustering approach, which is based on non-negative matrix factorization. Adding sparseness constraint and assigning good initial value in the modified NMF method, a proposed algorithm Direct-NMFSC yielded better result cluster compared to other methods which are also utilizing sparse constraint to their approaches, SNMF and NMFSC. The result of this study shows that Direct-NMFSC has 5.376 times of iteration number less than NMFSC in average with 531.97 as the CH index result. The determination of potential fishing zones is one of the essential efforts in the potential fishing zone mapping system for tuna fishing. By means of this novel data-driven study to construct the information and to identify the potential tuna fishing zones is done. We also showed that utilizing the Direct-NMFSC can spot and identify the potential tuna fishing zones presented in red cluster that covers both the spatial and temporal information.