Nguyen Thi Phuong Loan
Posts and Telecommunications Institute of Technology

Published : 31 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 31 Documents
Search

SrBaSiO4:Eu2+ phosphor: a novel application for improving the luminous flux and color quality of multi-chip white LED lamps Nguyen Thi Phuong Loan; Nguyen Doan Quoc Anh
International Journal of Electrical and Computer Engineering (IJECE) Vol 10, No 5: October 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (697.903 KB) | DOI: 10.11591/ijece.v10i5.pp5147-5154

Abstract

This paper described in detail the chromatic homogeneity and luminous flux influences in producing better quality white LED devices with various phosphor layers (MCW-LEDs). The method is to let Eu2+-activated strontium–barium silicate (SrBaSiO4:Eu2+) mixed with their phosphor compounding, which results in notable impact on lighting performance. The increase in concentration of yellow-green-emitting SrBaSiO4:Eu2+ phosphor also promotes the color performance and lumen output of WLED devices at high correlated color temperature around 8500K. This is the first time this approach is applied and it results can be utilized for better understanding of optical properties interaction with phosphor materials. Although SrBaSiO4:Eu2+ receives many positive responses, we still need to limit it concentration for high SrBaSiO4:Eu2+ concentration is detrimental to CQS. The appropriate choice of concentration and size of SrBaSiO4:Eu2+ is the principal factor to decide the performance of MCW-LEDs.
Using SiO2 nano-particles for better color uniformity and lumen output in 8500 K conformal and in-cup white LEDs My Hanh Nguyen Thi; Nguyen Thi Phuong Loan; Thuc Minh Bui; Tri-Vien Vu
International Journal of Electrical and Computer Engineering (IJECE) Vol 11, No 5: October 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v11i5.pp3897-3902

Abstract

In the effort of improving the performance of white light LEDs devices (WLEDs), the SiO2 nano-particles were applied and have shown a significant impact on the optical properties. Specifically, the light output of the lighting devices is enhanced when a mixture of SiO2 particles and silicone gel is diffused on the encapsulation layer surface. This enhancement is the result of light scattering from SiO2 that strengthens the emitted blue light at further angles and reduces the color discrepancy. The evidence is that CCT deviation in SiO2-doped structure decline from 1000 K to 420 K in -70° to 70°. In addition, the SiO2 with refractive index in between the phosphor material and outside environment allows light to be emitted outward more effectively. This lighting enhancement of SiO2-doped structure increases the lumen output by 2.25% at 120 mA power source in comparison to structure without SiO2. These experimental outcomes suggest that SiO2 is an effective material to add in WLEDs structure for better lighting efficiency.
Improving color quality and luminous flux of white LED utilizing triple-layer remote phosphor structure Nguyen Thi Phuong Loan; Nguyen Doan Quoc Anh
International Journal of Electrical and Computer Engineering (IJECE) Vol 10, No 5: October 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (656.516 KB) | DOI: 10.11591/ijece.v10i5.pp5168-5174

Abstract

In this manuscript, we presented a research that enhance the performance of WLED using the multi-phosphor configuration. The phosphor layers in the research are separated from each other to achieved better luminous efficiency, however, it makes controlling color light quality more complex. Another issue is finding out the whether two layers of phosphor or three layers of phosphor is better in improving color quality. The research addressed this issue by analyzing the optical aspects of the respective WLEDs that employ these structure. The studied aspects are quality indicators such as luminous efficacy (LE), and color uniformity, color rendering index (CRI), color quality scale (CQS). The results of the experiments in this research, which come from the employment of WLEDs with 2 color temperatures 5600 K and 8500, suggest that WLED with three phosphor layers is better in CRI, CQS, LE. This type of phosphor structure also limits the color deviation significantly, thus, improves the color uniformity. This results is verifies with Mie theory, therefore, can be applied as reference or guideline for production of better WLEDs
The Effects of ZnO particles on the color homogeneity of phosphor-converted high-power white LED light sources Nguyen Thi Phuong Loan; Nguyen Doan Quoc Anh
International Journal of Electrical and Computer Engineering (IJECE) Vol 10, No 5: October 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (497.368 KB) | DOI: 10.11591/ijece.v10i5.pp5155-5161

Abstract

Color homogeneity is one of the goals to continuously improve WLED. Among the methods for enhancing the color uniformity of WLEDs, improving scattering in phosphor layer is considered to be the most effective. In this paper, ZnO is used for that purpose. The results show that ZnO particle size significantly affects scattering in the phosphor layer, which is a vital factor to analyze scattering, scattering sand surface, scattering coefficient and scattered phase function C_sca (D,λ), μ_sca (λ) and ρ(θ,λ). In addition, the concentration of ZnO was also analyzed with values from 2% to 22%. Color homogeneity depends not only on size but also on the concentration of added ZnO. Therefore, color homogeneity control is the control of ZnO size and concentration. The proposed result is 10% ZnO for the highest lumen of LED. With 14% and 500 nm of ZnO particles, ΔCCT reaches the lowest. Depending on the production needs, manufacturers can choose the most appropriate way. However, with both required lumen and ΔCCT, 14% ZnO is suitable for ZnO sizes.
Utilizing CaCO3, CaF2, SiO2, and TiO2 particles to enhance color homogeneity and luminous flux of WLEDs Nguyen Thi Phuong Loan; Nguyen Doan Quoc Anh
International Journal of Electrical and Computer Engineering (IJECE) Vol 10, No 5: October 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1093.023 KB) | DOI: 10.11591/ijece.v10i5.pp5175-5182

Abstract

The chromatic homogeneity and luminous efficiency are two crucial elements for determining a high-quality phosphor-converted LEDs (pc-LEDs). Thus, this paper provides essential information in choosing the particles to enhance lighting properties of high performance pc-LEDs. Scattering enhancement particles (SEP) such as CaCO3, CaF2, SiO2, and TiO2, are combined with yellow phosphor Y3Al5O12:Ce3+ and applied to the lighting devices. Initially, optical simulations are carried out with the support of LightTools program. Next, the Mie-theory is applied to calculate and confirm the results. The calculation subjects are SEPs scattering properties within the band 455 -595 nm. The scattering results of TiO2 suggest it is the optimal choice for pc-LEDs color quality in comparison to the other SEPs; however, it causes the luminous flux to decrease significantly along with the increase in its concentration. Besides, with the addition of SiO2 grains, we can accomplish higher lumen output at all particle sizes. Meanwhile, the application of 30% CaCO3 can decrease the CCT deviation by 620 K making CaCO3 the potential particle to be selected for chromatic quality and light output enhancement of pc-LEDs.
Y2O3:Ho3+ and ZnO:Bi3+: a selection for enhancing color quality and luminous flux of WLEDs Nguyen Thi Phuong Loan; Nguyen Doan Quoc Anh
International Journal of Electrical and Computer Engineering (IJECE) Vol 10, No 5: October 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (437.093 KB) | DOI: 10.11591/ijece.v10i5.pp5162-5167

Abstract

As the luminescence industry develops, the white light light-emitting diode (LED) package with a single chip and a single phosphor although produces good luminous flux but has a poor color rendering index (CRI) can no longer fulfill the requirements of modern lighting applications. Therefore, this research is conducted to response to the urgent demands of improving other lighting qualities of WLED while maintaining high luminous efficiency. To achieve this target, we applied the new WLED package, which contains multi-chips and multi-phosphor layers, and have obtained outstanding results in both CRI and luminous efficacy. Two types of phosphor used in the WLED package are Y2O3:Ho3+ and ZnO:Bi3+. A color configuration model is also developed to adjust the shading of the white-light LED module. The results of this research show that the triple-layer phosphorhas the best performance when applied in a white-light LED package, which is demonstrated through better color quality, CRI and luminous efficacy, The manufacturers can rely on this research to produce the optimal-quality WLED, or WLED that is appropriate to their quality demands.
Na3Ce(PO4)2:Tb3+ and Na(Mg2–xMnX)LiSi4O10F2:Mn phosphors: a suitable selection for enhancing color quality and luminous flux of remote white light-emitting diodes Nguyen Thi Phuong Loan; Nguyen Doan Quoc Anh
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 18, No 4: August 2020
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v18i4.13723

Abstract

This study proposed the TRP, a remote phosphor structure that has 3 phosphor layers, to ehance the chromatic quality and lumen output for white light-emitting diodes devices (WLEDs). The arrangment of phosphor layers is yellow YAG:Ce3+ phosphor, green Na3Ce(PO4)2:Tb3+ phosphor, and red Na(Mg2–xMnX)LiSi4O10F2:Mn phosphor from bottom to top. Red Na(Mg2–xMnX)LiSi4O10F2:Mn phosphor is used for the red light component to boost color rendering index (CRI). The green layer Na3Ce(PO4)2:Tb3+ phosphor is utilized for the green light component to produce higher luminous flux (LF). With the addition of red and green phosphor, the yellow YAG:Ce3+ concentration must decrease to maintain the 6000 K color temperature. The research results show that red phosphor Na(Mg2–xMnX)LiSi4O10F2:Mn concentration is beneficial for CRI, while green phosphor Na3Ce(PO4)2:Tb3+ is detrimental to CRI. Morever, CQS reaction with red and green phosphor is also studied, which show notable improvement when Na(Mg2–xMnX)LiSi4O10F2:Mn concentration is from 10%-14%, regardless of Na3Ce(PO4)2:Tb3+. The luminous flux (LF) can also increase for more than 40% with the reduced light loss and added green phosphor. Research results are valuable references for producers to enhance the color quality and the light emission of WLEDs.
Acquiring higher lumen efficacy and color rendering index with green NaYF4:Er3+Yb3+ and red α-SrO·3B2O3:Sm2+ layers for designing remote phosphor LED My Hanh Nguyen Thi; Nguyen Thi Phuong Loan; Nguyen Doan Quoc Anh
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 18, No 6: December 2020
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v18i6.13796

Abstract

Lighting devices that apply diodes to create white light-emitting diodes (WLEDs) can achieve remarkable results in color quality, especially those containing quantum dots (QDs) and phosphor. The technique to create an appropriate package is providing spaces between the QDs and phosphor components which helps decrease the ratio of the reabsorption losses and keeps the QDs surface ligands constant. The research aims to perfect the constructing method of remote phosphor configuration containing quantum dots and phosphor materials that based on lighting properties and temperature feature of WLEDs. The infrared thermography is the tool to measure and analyze total emitted light and emission ranges of the device. This device is also used in temperature simulation and experimental verification. At the given mA of 60, the WLEDs structure with green QDs layer above the phosphor layer results in 996 lm luminous flux (LF), and Ra = 57 in color rendering ability. Meanwhile, luminous flux of WLEDs with red QDs-on-phosphor structure is 632, and Ra = 70. Furthermore, comparing with the green QDs-on-phosphor type, the red QDs-on-phosphor type emitted less LF. However, the red QDs-on-phosphor type can be the most effective package design to achieve color rendering ability.
Comparison of calcium carbonate and titania particles on improving color homogeneity and luminous flux of WLEDs Thinh Cong Tran; Nguyen Doan Quoc Anh; Nguyen Thi Phuong Loan
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 18, No 5: October 2020
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v18i5.13552

Abstract

In this paper, the experiments on phosphor-converted LEDs (pc-LEDs) with a correlated color temperature (CCT) of 8500K has been conducted with the scattering enhancement particles (SEPs) to achieve the higher color uniformity and emitted luminous flux of pc-LEDs. Moreover, this paper also introduced about choosing scattering enhancement particles (SEPs), including calcium carbonate (CaCO3) and titania (TiO2), and compared these particles’ properties by adding them into the yellow Y3Al5O12:Ce3+ phosphor compounding. Afterward, the LightTools program was applied to illustrate the optical simulation, and obtained results was analyzed and verified by applying the Mie-scattering theory. The scattering coefficients, the anisotropic scattering, the reduced scattering, and the scattering amplitudes at 455 nm and 595 nm are included in the scattering computation of SEPs. According to researched results, among the SEPs, TiO2 particles result in the highest value of color uniformity. However, a rise in their concentration is the cause of a sharp decline in luminous flux. Meanwhile, CaCO3 particles show the ability of reducing the deviated level in correlated color temperature by 620K if there is employed 30% of CaCO3 concentration. Hence, CaCO3 particles are the recommendation for achieving higher chromatic homogeneity and lumen output.
Enhancing light sources color homogeneity in high-power phosphor-based white LED using ZnO particles Anh-Minh D. Tran; Nguyen Doan Quoc Anh; Nguyen Thi Phuong Loan
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 18, No 5: October 2020
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v18i5.14198

Abstract

Color uniformity is one of the essentials for the on-going development of WLED. To achieve a high color uniformity index, increasing the scattering events within the phosphor layers was reported to be the most efficient method and in this article, ZnO is the chosen material to apply in this method. After analyzing the scattering properties through the scattering cross-section , scattering coefficient  and scattering phase function , the which outcomes comfirm that ZnO can enhance the scattered light in the phosphor layers. Moreover, the findings from the study of ZnO concentration from 2% to 26% suggest that color uniformity also depends on the fluctuation of ZnO concentration, therefore, to control color uniformity the focus should be implied on both size and concentration of ZnO. The experimental results from this research show that the luminous flux of WLED is at the peak if the concentration of ZnO is at 6%, and when the concentration of ZnO is at 18% and has 100 nm particles size, the ΔCCT reaches the lowest level. The final choice should be based on the desired characteristic of WLEDs, however, if the WLED need to excel in both luminous flux and ΔCCT then 6% ZnO concentration with particles size from 100 nm-300 nm is the optimal choice.