Nguyen Thi Phuong Loan
Posts and Telecommunications Institute of Technology

Published : 31 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 31 Documents
Search

Improving optical properties of remote phosphor LED using green Y2O3:Ho3+ and red Mg4(F)(Ge, Sn)O6:Mn2+ layers My Hanh Nguyen Thi; Nguyen Thi Phuong Loan; Nguyen Doan Quoc Anh
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 18, No 6: December 2020
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v18i6.13797

Abstract

The lighting device that employs diodes to create white light (WLEDs) with quantum dots (QDs) and phosphor layers is a promising lighting method that is increasingly used in many fields on account of the remarkable color expressing ability. The QDs film is usually placed apart from the phosphor layer according to the packaging configuration to prevent light loss due to backscattering as well as preserve the consistency of the ligands on the QDs surface. The article also conducted experiments to compare the lighting properties and thermal output of the two packaging orders of QDs and phosphor. The heat discharing ranges were simulated with thermography technology, moreover, other parameters such as light energy emission and PL spectra are acquired to evaluate the efficiency of the packaging order. The results from the practical experiment show that while under 10% wt., the luminous output (LO) of green QDs-on-phosphor structure reaches 1130 lm, higher than the red QDs-on-phosphor structure with 878 lm, and the color rendering value in the configuration with red QDs on phosphor is Ra = 74 are higher than Ra = 68 index of the green QDs-on-phosphor structure. As a result, the QDs-on-phosphor is determined as the better packaging configuration to choose to achieve an overall improvement in lighting efficiency, color rendering index
The influences of calcium fluoride and silica particles on improving color homogeneity of WLEDs Anh-Minh D. Tran; Nguyen Doan Quoc Anh; Nguyen Thi Phuong Loan
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 18, No 5: October 2020
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v18i5.13571

Abstract

The LEDs lighting device with phosphor ingredient (pcLEDs) is among the most common lighting methods in recent years and evaluated by chromatic uniformity and lighting capacity. Therefore, we introduce the phosphor particles that can improve the scattering efficiency (SEPs) to apply in pcLEDs at 8500 K correlated color temperature (CCT) with the expectation to produce better pcLEDs by enhancing both quantity and quality of emitted light. Combining various materials such as CaF2 and SiO2 with yellow Y3Al5O12:Ce3+ phosphor composition in the pcLEDs simulation created by the LightTools program is the mechanism of this research. The simulated pcLEDs are tested and the results will be verified with Mie-scattering theory. The observation of the simulation leads to the conclusion about the scattering coefficients of SEPs at 455 nm and 595 nm wavelengths. The calculation showed that CaF2 is better for color homogeneity yet suffer from luminous flux deficiency as the concentration gets higher. On the other hand, SiO2 is the scattering enhancement material that can maintain high luminous flux regardless of its concentration. 
Study of red-emitting LaAsO4:Eu3+ phosphor for color rendering index improvement of WLEDs with dual-layer remote phosphor geometry My Hanh Nguyen Thi; Nguyen Thi Phuong Loan; Nguyen Doan Quoc Anh
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 18, No 6: December 2020
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v18i6.13637

Abstract

The remote phosphor structure is often disadvantageous in color quality but in terms of optics it is more convenient when compared to other phosphor structures such as conformal or in-cup ones. From this disadvantage, there are many studies to improve its chromatic output. In this research paper, we propose a dual-layer remote phosphor geometry for the improvement of white light-emitting diodes (WLEDs) in two parameters: color rendering index (CRI) and color quality scale (CQS). The 7700 K WLEDs are used in this study. The idea of the study is to place a red phosphor layer LaAsO4:Eu3+ on the yellow phosphor YAG: Ce3+, and then find the concentration of LaAsO4:Eu3+ in an appropriate way to achieve the highest color quality. The results showed that LaAsO4:Eu3+ bring great benefits for enhancing CRI and CQS. In particular, the greater the concentration of LaAsO4:Eu3+, the greater the CRI and CQS because the portion of red lights in WLEDs increases. However, the decrease in lumen output occurs when the concentration of LaAsO4:Eu3+ increases excessively. This is proved thanks to Mie-scattering theory and Beer-Lambert law. The results of important articles in WLEDs fabrication have greatly contributed to a higher white light quality.
Design of freeform lens for WLEDs on the fishing boat Nguyen Thi Phuong Loan; Thinh Cong Tran
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 18, No 3: June 2020
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v18i3.12085

Abstract

In this article, a free secondary lens is designed for an LED fishing/working lamp (LFWL), which is recommended for the purpose of taking the place of a traditional high-intensity discharge (HID) fishing lamp. To serve the lighting needs of fishing and the on-board activities on fishing boats, the innovative LED lamp is proposed. To make the freeform lens in our optics design process, we depended on Gaussian decomposition. In this way, it is easy to approach the targeted light intensity distribution curve (LIDC) of the LFWL lens. The simulated results show that the performance of the LED fishing/working lamps is much better than that of HID fishing lamps for illumination onboard, on the sea-surface, and underwater. Meanwhile, a lighting efficiency of 91% with the power consumption reduction of more than 50% can be achieved when the proposed LED fishing/working lamps are used instead of the HID fishing lamps.
The application of green YF3:Er3+,Yb3+ and red MgSr3Si2O8:Eu2+,Mn2+ layers to remote phosphor LED My Hanh Nguyen Thi; Nguyen Thi Phuong Loan; Nguyen Doan Quoc Anh
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 18, No 6: December 2020
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v18i6.13827

Abstract

White light-emitting diodes (WLEDs) with quantum dots (QDs) and phosphor have pulled in huge consideration because of their incredible shading rendering capacity. In the bundling procedure, a QDs film and a phosphor silicone layer will in general be isolated for lessening the reabsorption misfortunes and keeping the QDs surface molecules in a good condition. This examination explored the bundling succession of QDs and phosphor layers to the optical and warm exhibitions of WLEDs. The emitted optical power and PL spectra were estimated and dissected, while an infrared warm imager was utilized to reenact and approve tentatively the temperature fields. The results reveal that at 60 mA, WLEDs with green QDs-on-phosphor type accomplished lumen output (LO) of 1578 lm, with shading rendering record (CRI) of Ra = 60, while the red QDs-on-phosphor type WLEDs exhibited lower LO of 1000 lm, with Ra = 82. In addition, the QDs-onphosphor type WLEDs generated less warmth than the other, and as a result, the most noteworthy temperature in this packaged type was lower than the other. Additionally, its temperature contrast can arrive at 12.3°C. Along these lines, regarding bundling arrangement, the QDs-on-phosphor type is an ideal bundling design to better the optical productivity and shading rendering capacity, as well as lower gadget temperature.
The application of green YPO4:Ce3+,Tb3+ and red LiLaO2:Eu3+ layers to remote phosphor LED My Hanh Nguyen Thi; Nguyen Thi Phuong Loan; Nguyen Doan Quoc Anh
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 18, No 6: December 2020
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v18i6.13647

Abstract

Remote phosphor structure is commonly limited in color quality, but has greater luminous flux when comparing to structures with in-cup or conformal coating. From this dilemma, various researches with advance modifications have been proposed to perfect the chromatic performance of remote structure. In this research, we reach higher color quality by obtaining better values in quality indcators such as color rendering index (CRI) and color quality scale (CQS) with the dual-layer phosphor in our remote white light-emitting diodes (WLEDs). The idea is to ultize WLEDs with 7000 K correlated color temperature (CCT) and create dual-layer configuration with yellow phosphor YAG:Ce3+ under green phosphor YPO4:Ce3+,Tb3+ or red phosphor LiLaO2:Eu3+. After that, we search for suitable concentration of LiLaO2:Eu3+ for addition in order to acquire the finest color quality. The result shows that WLED with LiLaO2:Eu3+ has better CRI and CQS as the higher the concentration of LiLaO2:Eu3+, the larger CRI and CQS due to increased light scattered in WLEDs. Meanwhile, the green phosphor layer YPO4:Ce3+,Tb3+ give advantages to luminous flux. However, the reduction in luminous flux and color quality occurs when the concentration of LiLaO2:Eu3+ and YPO4:Ce3+,Tb3+ over increase. Results are verified by Mie theory and Beer’s Law and can be applied to practical manufacturing of high quality WLEDs.
The application of (Y,Gd)BO3:Tb3+ and CaGa2S4:Mn2+ phosphors to remote white light-emitting diodes Thuc Minh Bui; Nguyen Thi Phuong Loan; Phan Xuan Le; Nguyen Doan Quoc Anh; Anh Tuan Le; Le Van Tho
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 18, No 1: February 2020
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v18i1.13713

Abstract

The remote phosphor structure is superior to the conformal phosphor and the in-cup phosphor in terms of lighting efficiency; however, managing the color quality of the remote phosphor structure has been a nuisance to the manufacturers. To address this problem, many researches were conducted and the results suggested that using dual-layer phosphor structure and triple-layer phosphor structure could improve the color quality in remote phosphor structures. The purpose of this article is to study which one between the two configurations mentioned above allows multi-chip white LEDs (WLEDs) to reach highest indexes in color rendering index (CRI), color quality scale (CQS), luminous flux (LF), and color uniformity. The color temperature of the WLEDs used for the experiments in this article is 8500 K. The result of this research shows that the triple-layer phosphor configuration has higher CRI, CQS, and LE and also able to reduce color deviation resulting in better color uniformity. This conclusion can be verified by analyzing the scattering features of the phosphor layers using the Mie-theory. Being verifiable increases the reliability of the research result and makes it a valuable reference for producing better quality WLEDs.
Improving color rendering index of WLEDs with convex-dual-layer remote phosphor geometry using red-emitting CaGa2S4:Mn2+ phosphor Nguyen Thi Phuong Loan; Anh Tuan Le
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 18, No 5: October 2020
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v18i5.14250

Abstract

The white-light light-emitting diode (LED), a conventional illumination solution, usually consists of one chip and one phosphor layer, which leads to the insufficient color rendering index (CRI) in this configuration. To optimize the efficiency of WLED, a new LED package with 2 chips and one phosphor was proposed, this innovative configuration can yield more lights and achieve high CRI. Thus, this study aims at perfecting the color performance with the two chips and dual phosphor layers package with the proportions and densities of phosphor in the silicone constantly changed to find the best option. The white-light LED module is adjusted using a specialized color design model. The comparison results between the measured and the simulation from the color design model CIE 1931 color coordinates suggest that the highest discrepancy is about 0.0063 and is achieved at around 5600K correlated color temperature (CCT). This study’s results lay a firm path in customizing white-light LED modules that guarantee CRI and lumen output qualities.
The options in remote phosphor structure for better white LEDs color quality Nguyen Thi Phuong Loan; Nguyen Doan Quoc Anh
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 18, No 5: October 2020
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v18i5.13526

Abstract

The WLEDs configuration with remote phosphor layers has higher luminescent performance than WLEDs with dispense coating or conformal coating and is applied for many modern devices. However, managing the chromatic performance of lighting structure with remote phosphor materials is a challenging objective that demands more research. This has inspired the usage of multi phosphor configurations with distance in between the layers to improve color quality. The results of this manuscript can support the manufacturers in choosing the optimal configuration for optical performance in LEDs devices with more than one phosphor material. The simulated model used in the experments is 6500 K CCT WLEDs, which results show the triple-layers structure is more favorable in terms of color quality and light output. Besides, a notable reduction occurs in color deviation means that chromatic stability is also enhanced in WLEDs with three phosphor layers. Through experimental results, which were confirmed by the Mie-scattering theory, this research offers valuable approach and details to produce better WLEDs.
Green-emitting Gd2O2S:Tb3+ and red-emitting Y3Al5O12:Cr3+ phosphors: a suitable selection for enhancing color quality of remote phosphor structure Nguyen Thi Phuong Loan; Thinh Cong Tran
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 18, No 3: June 2020
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v18i3.13626

Abstract

This article demonstrates green-emitting phosphor Gd2O2S:Tb3+ and red-emitting phosphor Y3Al5O12:Cr3+ application in the triple-layer phosphor WLED to enhance optical performance. The arrangement of phosphor layers in the WLED is red phosphor Y3Al5O12:Cr3+ on top, green phosphor Gd2O2S:Tb3+ in the middle, and yellow phosphor YAG:Ce3+ at the bottom. The principal to utilize these phosphor materials is the exploitation of additional red light component and green light component from the green and red phosphor to enrich the color rendering index (CRI) and luminous efficacy. The influences of green phosphor and red phosphor are also estimated with a new quality indicator, the color quality index (CQS). The results show red phosphor Y3Al5O12:Cr3+ enable CRI when its concentration increases while green phosphor exhibits a contrast reaction. Regarding the CQS, the optimal red phosphor concentration for CQS is from 10% to 14%, disregard the concentration in green phosphor. The improvement that applying these two phosphor materials brought comes from limiting the light loss from back-scattering and strengthen chromatic performance through addition red and green light components. These findings can support manufacturers in adapting to modern lighting requirements by improving CRI, CQS and particularly luminous efficiency to more than 40%.