Claim Missing Document
Check
Articles

Found 24 Documents
Search

Implementasi metode Simple Multi Attribute Rating Technique untuk penentuan prioritas rehabilitasi dan rekonstruksi pascabencana alam Cholil, Saifur Rohman; Pinem, Agusta Praba Ristadi; Vydia, Vensy
Register: Jurnal Ilmiah Teknologi Sistem Informasi Vol 4, No 1 (2018): January-June
Publisher : Prodi Sistem Informasi - Universitas Pesantren Tinggi Darul Ulum

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1173.717 KB) | DOI: 10.26594/register.v4i1.1133

Abstract

Penanganan bencana alam di Indonesia menjadi hal yang sangat penting untuk segera dilakukan dalam menentukan prioritas rehabilitasi dan rekonstruksi wilayah pascabencana alam. Penentuan prioritas rehabilitasi dan rekonstruksi pascabencana alam dilakukan dengan pendekatan metodologi Sistem Pendukung Keputusan (SPK) untuk membantu menyelesaikan permasalahan dalam proses pengambilan keputusan. Metode Simple Multi Attribute Rating Technique (SMART) akan diterapkan untuk menentukan prioritas wilayah pada rencana aksi rehabilitasi dan rekonstruksi pascabencana alam karena kesederhanaannya pada proses perhitungan dalam pemilihan alternatif yang telah dirumuskan. Tujuan penelitian ini adalah menghasilkan SPK dengan mengimplementasikan metode SMART untuk menentukan prioritas rehabilitasi dan rekonstruksi wilayah pascabencana, sehingga proses penanggulangan bencana akan tepat sasaran dan sesuai dengan peraturan penanggulangan bencana alam. Proses validasi pada penelitian ini adalah dengan membandingkan hasil metode dengan data fakta atau data kejadian (data histori). Koefisien Korelasi Rank Spearman yang diperoleh yaitu 0,95. Hal ini menunjukan bahwa, metode SMART bisa digunakan untuk menentukan prioritas rehabilitasi dan rekonstruksi pascabencana alam.The handling of natural disasters in Indonesia becomes a very important thing to be done in determining the priority of rehabilitation and reconstruction of post-disaster natural areas. The prioritization of post-disaster natural rehabilitation and reconstruction is done by methodology of Decision Support System (DSS) to help solve problems in decision making process. The Simple Multi Attribute Rating Technique (SMART) method will be applied to determine the priority of the region in the post-disaster natural rehabilitation and reconstruction action plan because of its simplicity in the calculation process in the alternative selection that has been formulated. The purpose of this research is to produce SPK by implementing SMART method to determine priority of rehabilitation and reconstruction of post disaster area, so that disaster management process will be appropriate target and in accordance with natural disaster management regulation. The validation process in this research is by comparing the method result with fact data or event data (historical data). Spearman Rank Correlation Coefficient obtained is 0.95. This indicates that the SMART method can be used to determine priorities for post-disaster rehabilitation and reconstruction.
Optimizing costs for vaccine control using the reorder point approach Huizen, Lenny Margaretta; Handayani, Titis; Cholil, Saifur Rohman; Faradilah, Yanti
Register: Jurnal Ilmiah Teknologi Sistem Informasi Vol 7, No 1 (2021): January
Publisher : Information Systems - Universitas Pesantren Tinggi Darul Ulum

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26594/register.v7i1.2099

Abstract

Vaccines are biological products that have an important role in human immunity. In Indonesia, some vaccines are categorized as compulsory vaccines and additional vaccines. The demand for additional vaccines is less predictable because they are not mandatory for use. This of course makes the amount of demand for vaccines less predictable. Also, the price of additional vaccines is not cheap when compared to the price of mandatory vaccines. So that the management of vaccines in the pharmacy warehouse is needed so that the amount of supply and demand is balanced so that the costs incurred will be more optimal. The information system regarding vaccine reordering is carried out using a reorder point so that the pharmacy warehouse can order according to the right need and at the right time.  The data used are demand data, prices, storage costs, and message costs. The results of calculations using reorder points within four months with a total purchase for the Rotavirus vaccine was 62 for IDR 28,274,948 and 70 for the hospital of IDR 31,801,500 with a difference of IDR 3,528,552. The calculation result using the reorder point for the Hexaxim vaccine with a total purchase for 4 months was 61 with a nominal value of IDR 58,380,060 while the calculation in the hospital was 67 with a nominal value of IDR 63,971,000 so that a nominal difference of IDR 5,590,940 was obtained.  Use of the return point can be used to alarm when and how many vaccines to order. This can be seen from the cost difference between the pharmacy warehouse and the calculation using the reorder point for the Hexaxim vaccine and the Rotavirus vaccine.
PREDIKSI PENYAKIT DEMAM BERDARAH DI PUSKESMAS NGEMPLAK SIMONGAN MENGGUNAKAN ALGORITMA C4.5 Saifur Rohman Cholil; Aditya Febri Dwijayanto; Tria Ardianita
Sistemasi: Jurnal Sistem Informasi Vol 9, No 3 (2020): Sistemasi: Jurnal Sistem Informasi
Publisher : Program Studi Sistem Informasi Fakultas Teknik dan Ilmu Komputer

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (3528.609 KB) | DOI: 10.32520/stmsi.v9i3.898

Abstract

ABSTRACTDengue Hemorrhagic Fever (DHF) is a disease whose main cause is the flaviviridae virus. This virus can be transmitted through mosquito bites. The spread of this disease is faster in urban areas than in rural areas due to the high population density. Aedes aegypti mosquito is very easy to spread dengue virus from one person to another because it has a domestic nature. The Ministry of Health has collaborated with local health centers in the DHF prevention program. Ngemplak Simongan Health Center is one of the public health centers located in the District of West Semarang that serves a variety of treatments for this type of disease, one of which is a patient with Dengue Hemorrhagic Fever (DHF). C4.5 algorithm is used to predict dengue fever which aims to produce a decision tree. The choice of using Algortima is because it is widely used to describe a pattern / knowledge / information in the form of a decision tree explicitly. Application created using PHP programming language that produces prediction of dengue fever. The test results obtained an accuracy value of 94.44% so that the application program built can be used correctly.Keywords: c4.5 algorithm, decision tree , dengue hemorrhagic feverABSTRAKDemam Berdarah Dengue (DBD) adalah sebuah penyakit yang penyebab utamanya adalah virus flaviviridae. Virus ini dapat ditularkan melalui gigitan nyamuk. Penyebaran penyakit ini lebih cepat di area perkotaan dibandingkan di area pedesaan karena faktor tingginya kepadatan penduduk. Nyamuk Aedes aegypti sangat mudah menyebarkan virus dengue dari orang satu ke orang lain karena memiliki sifat domestik. Departemen kesehatan telah melakukan kerja sama dengan puskesmas sekitar dalam program penanggulangan penyakit DBD. Puskesmas Ngemplak Simongan merupakan salah satu puskemas yang berada di Kecamatan Semarang Barat yang melayani berbagai macam pengobatan jenis penyakit, salah satunya adalah penderita Demam Berdarah Dengue (DBD). Algoritma C4.5 digunakan untuk prediksi penyakit demam berdarah yang bertujuan menghasilkan sebuah pohon keputusan. Pemilihan penggunaan Algortima ini karena banyak digunakan untuk menggambarkan suatu pola/pengetahuan/informasi dalam bentuk pohon keputusan secara eksplisit. Aplikasi yang dibuat menggunakan bahasa pemrograman PHP yang menghasilkan prediksi penyakit demam berdarah. Hasil pengujian didapatkan nilai akurasi sebesar 94.44% sehingga aplikasi program yang dibangun dapat digunakan secara benar.Kata Kunci: algoritma c4.5, pohon keputusan, demam berdarah dengue
Implementasi Algoritma Klasifikasi K-Nearest Neighbor (KNN) Untuk Klasifikasi Seleksi Penerima Beasiswa Saifur Rohman Cholil; Titis Handayani; Rastri Prathivi; Tria Ardianita
IJCIT (Indonesian Journal on Computer and Information Technology) Vol 6, No 2 (2021): IJCIT November 2021
Publisher : LPPM Universitas Bina Sarana Informatika

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (534.184 KB) | DOI: 10.31294/ijcit.v6i2.10438

Abstract

AbstrakPemberian beasiswa kepada siswa Sekolah Menengah Atas (SMA) sudah umum dilakukan. Hal ini terjadi sejak adanya dana pendidikan 20% dari Kementrian Pendidikan dan Kebudayaan (Kemendikbud). Selain untuk batuan kepada siswa yang kurang mampu, beasiswa juga diberikan kepada siswa yang mempunyai prestasi akademik maupun prestasi non akademik. Pemberian beasiswa yang terjadi selama ini baik di SMA ataupun yang lain masih menggunakan perhitungan dan pengolahan data secara manual. Proses perhitungan secara manual memungkinkan adanya penerima  beasiswa  yang tidak tepat sasaran. Pengolahan penerimaan beasiswa bisa menggunakan sebuah algoritma data mining untuk mengklasifikasikan  calon penerima  beasiswa  berdasarkan  data yang diambil dari data siswa  penerima beasiswa sebelumnya (data training) dengan data yang diambil dari calon penerima beasiswa (data testing). Penelitian ini bertujuan membantu proses seleksi beasiswa di SMA menggunakan algoritma K-Nearest Neighbor (KNN) supaya penerima beasiswa tepat sasaran. Algoritma KNN bisa memberikan  kebutuhan data yang akurat  dan informasi yang diperlukan untuk menyeleksi  calon penerima beasiswa. Hasil dari penelitian ini adalah adalah terseleksinya 30 orang dari 89 data yang telah dilakukan klasifikasi.  Pengujian sistem menggunakan pengujian akurasi metode confusion matrix dengan hasil pengujian sebesar 90.5%. Hal ini menunjukkan bahwa algoritma KNN bisa digunakan untuk mengklasifikasikan seleksi penerimaan beasiswa.Kata Kunci: algoritma, beasiswa, data mining, KNNAbstractProviding scholarships to high school students (SMA) is common. This happened since there was a 20% education fund from the Ministry of Education and Culture (Kemendikbud). In addition to rocks to underprivileged students, scholarships are also given to students who have academic and non-academic achievements. Scholarships that have occurred so far both in high school and others still use manual calculation and data processing. The manual calculation process allows for scholarship recipients who are not on target. Processing scholarship receipts can use a data mining algorithm to classify prospective scholarship recipients based on data taken from previous scholarship recipient student data (training data) with data taken from prospective scholarship recipients (data testing). This study aims to help the scholarship selection process in high school using the K-Nearest Neighbor (KNN) algorithm so that scholarship recipients are on target. The KNN algorithm can provide accurate data and information needed to select prospective scholarship recipients. The result of this research is the selection of 30 people from 89 data that has been classified. System testing uses the accuracy of confusion matrix testing with 90.5% test results. This shows that the KNN algorithm can be used to classify scholarship acceptance selections.Keywords: algorithms, data mining, KNN, scholarship 
Sistem Pendukung Keputusan Seleksi Calon Karyawan Baru PT. Dawam Prima Perkasa Menggunakan Metode Aras Berbasis Web Saifur Rohman Cholil; Enggar Satrio Prisiswo
JRSI (Jurnal Rekayasa Sistem dan Industri) Vol 7 No 02 (2020): Jurnal Rekayasa Sistem & Industri - Desember 2020
Publisher : School of Industrial and System Engineering, Telkom University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25124/jrsi.v7i2.422

Abstract

Karyawan merupakan salah satu faktor pendukung bagi sebuah perusahaan, karena dengan memiliki karyawan yang berkualitas, sesuai dengan kualifikasi dan kriteria yang dibutuhkan perusahaan barulah perusahaan tersebut dapat berkembang dan bergerak maju di masa depan. Tidak terkecuali PT. Dawam Prima Perkasa yang sedang membutuhkan karyawan baru yang sesuai untuk bekerja diperusahaan. Namun PT. Dawam Prima Perkasa dihadapkan dengan sebuah masalah dimana dengan banyaknya calon karyawan yang mengikuti tes seleksi, maka akan menimbulkan banyaknya berkas yang masuk harus disesuaikan dengan kriteria yang dimiliki perusahaan serta membutuhkan waktu yang tidak sedikit, sehingga rentan terjadinya kekeliruan berkas. Untuk meminimalisir terjadinya kesalahan serta lama waktu yang digunakan, dibuatlah suatu Sistem Pendukung Keputusan untuk menentukan calon karyawan terbaik yang akan bekerja diperusahaan. Metode Sistem Pendukung Keputusan yang digunakan adalah Additive Ratio Assessment (ARAS). Penelitian ini telah melalui proses validasi korelasi rank spearman dan diperoleh nilai sebesar 0,950. Berdasarkan hasil tersebut, metode ARAS dapat digunakan dalam menyeleksi calon karyawan baru pada PT. Dawam prima Perkasa.
PENENTUAN PREDIKSI STOK MOBIL DENGAN PENDEKATAN KEPUASAN PELANGGAN MENGGUNAKAN METODE MOORA Henny Indriyawati; Saifur Rohman Cholil; Victor Gayuh Utomo
Telematika Vol 11, No 2: Agustus (2018)
Publisher : Universitas Amikom Purwokerto

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (445.172 KB) | DOI: 10.35671/telematika.v11i2.717

Abstract

PT. New Ratna Motor adalah perusahaan bergerak dibidang otomotif yang  menangani penjualan mobil merk Toyota dan penjualan spare part. Data penjualan dan stok mobil yang ada tidak seimbang, antara mobil yang masuk dengan penjualan mobil lebih besar mobil yang masuk sehingga terjadi penumpukan stok jumlah mobil yang mengakibatkan kerugian yang meliputi pajak berjalan yang harus dibayar perusahaan, menumpuknya jumlah tipe mobil tertentu dan pengeluaran sewa parkir mobil. Metode MOORA akan diterapkan sebagai metode dalam penentuan perangkingan jenis mobil yang harus di stok oleh perusahaan yang juga berpengaruh terhadap kepuasan pelanggan, jika pelanggan puas dengan salah satu tipe/jenis mobil tertentu dan cepat mendapatkan unit tersebut, kemungkinan pelanggan akan membeli produk tersebut. Hasil akhir pada penelitian ini adalah model aplikasi pendukung keputusan untuk penentuan prediksi stok mobil dengan pendekatan kepuasan pelanggan.
Concentration Determination Disciplines Of Final Projects Using Simple Additive Weighting Khoirudin Khoirudin; Muhammad Zakki Abdillah; Saifur Rohman Cholil
Jurnal Transformatika Vol 15, No 2 (2018): January 2018
Publisher : Jurusan Teknologi Informasi Universitas Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26623/transformatika.v15i2.601

Abstract

A final project is the last project that must be made by a student before obtaining a degree. In practice students often experience confusion in determining the topic to be taken or what the concentration will serve as the topic of the final projects, where the topic is in accordance with their competence.Simple Additive Weighting (SAW) which is also known as weighted linear combination or scoring method is a simple and most often used multi attribute decision technique. This SAW method we trying to use to determine the final projects what is in accordance with the competence of students in the department of informatics Semarang Private University Semarang.The Result of this research can be provide input for students in determining their final projects, taking into consideration the values they acquired during the course. With the results of this research is expected the students will be able to work on their project papers to the maximum.
Electre Method for Determining Car Stock at PT. New Ratna Motor with a Customer Satisfaction Approach Saifur Rohman Cholil; Henny Indriyawati
Jurnal Transformatika Vol 16, No 2 (2019): January 2019
Publisher : Jurusan Teknologi Informasi Universitas Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26623/transformatika.v16i2.1179

Abstract

Managing car stock is the biggest challenge for a company, especially in PT. New Ratna Motor engaged in automotive. The problem is related to the process of selling goods where the sales and car stock are out of balance. Comparisons between cars entering and cars coming out (sales) are larger cars that enter so that there is a buildup of stock in the number of cars which results in company losses which include running taxes that must be paid each year, as well as the accumulation of certain types of cars and spending on car parking. The ELECTRE method is applied as a method in determining what types of cars should be stocked by the company based on customer satisfaction, if the customer is satisfied with one type / type of car and quickly gets the unit, chances are the customer will buy or reference the product. The final result of this study is the ranking of the alternatives for determining the stock of the car.
A HYBRID Approach for Determine the Location of Stand Establishment at Batik Hatta Semarang Saifur Rohman Cholil; Leatitia Daphne Adhisti Putri Pertiwi
IJCCS (Indonesian Journal of Computing and Cybernetics Systems) Vol 14, No 3 (2020): July
Publisher : IndoCEISS in colaboration with Universitas Gadjah Mada, Indonesia.

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ijccs.56206

Abstract

Semarang has various types of business. One of them is Batik Hatta Boutique, a small and medium business under the guidance of the Bank of Central Java that deals specifically in the world of batik art. This business develops and maintains its existence by participating in various exhibitions in several shopping centers as a media product promotion. To minimize losses, it needs accurate calculation in making decision of determining the location of establishment. It is reviewed by rental cost, location, layout, profit, and security. However, that calculation is still manual so it is inefficient and susceptible to error. Therefore, Decision Support System (DSS) is made to help in getting recommended location of best establishment at the Butik Batik Hatta. The method used in this research is the HYBRID MCDM AHP-TOPSIS Method. Validation process of this research has been done by using comparison of actual data and its result is 0.90 in the Sparman Correlation Coefficient. The conclusion is that the AHP-TOPSIS HYBRID MCDM method can be used in determining  the location of establishment stand at the Batik Hatta Boutique.
SISTEM PENDUKUNG KEPUTUSAN PERPANJANGAN KONTRAK KERJA KARYAWAN PADA PT. TELKOM AKSES REG IV MENGGUNAKAN METODE ORESTE Saifur Rohman Cholil
JATISI (Jurnal Teknik Informatika dan Sistem Informasi) Vol 8 No 2 (2021): JATISI (Jurnal Teknik Informatika dan Sistem Informasi)
Publisher : Lembaga Penelitian dan Pengabdian pada Masyarakat (LPPM) STMIK Global Informatika MDP

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35957/jatisi.v8i2.340

Abstract

PT Telkom Akses has fairly many employees, some of these employees still have status as contract employees, The employee's employment contract lasts for one year and then at the end of each period of the employee's contract there will be a performance evaluation which includes several criteria to determine whether the employee gets a contract extension or not. The number of employees of PT Telkom Akses with the status of contract employees is not small and the assessment process that is still manual becomes an obstacle in the assessment process because it is difficult and requires a lot of time. In determining employee work contracts, subjectivity often arises from managers or coworkers who can influence the decision making process regarding employee employment contracts. The criteria for evaluating employee work contracts include appraisal, absenteeism, BPJS employment, and employee position. The results of this study obtained a value of 0.90 on the validation of the Spearman Correlation Coefficient calculation. So the system is feasible to be used in the determination of employee employment contract at PT. Telkom Access REG IV.