Claim Missing Document
Check
Articles

Found 14 Documents
Search

Suatu Ukuran Bernilai C[a,b] Firdaus Ubaidillah
Prosiding SI MaNIs (Seminar Nasional Integrasi Matematika dan Nilai-Nilai Islami) Vol 1 No 1 (2017): Prosiding SI MaNIs (Seminar Nasional Integrasi Matematika dan Nilai Islami )
Publisher : Mathematics Department

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (693.057 KB)

Abstract

Dalam paper ini dikonstruksi suatu ukuran bernilai , dimana adalah koleksi semua fungsi kontinu bernilai real yang terdefinisi pada selang tertutup dan terbatas . Dalam mengkonstruksi ukuran bernilai tersebut, terlebih dahulu dikonstruksi ukuran luar bernilai . Kemudian membangkitkan ukuran melalui ukuran luar tersebut. Beberapa sifat sederhana yang berkaitan dengan ukuran bernilai juga akan dibahas dalam paper ini.
Pembangkitan Fraktal Pohon Pythagoras Menggunakan Iterated Function System Jafna Kamalia Sundusia; Firdaus Ubaidillah; Kosala Dwidja Purnomo
Prosiding SI MaNIs (Seminar Nasional Integrasi Matematika dan Nilai-Nilai Islami) Vol 3 No 1 (2019): Prosiding SI MaNIs (Seminar Nasional Integrasi Matematika dan Nilai Islami)
Publisher : Mathematics Department

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Fraktal merupakan objek geometri yang tampak memiliki persamaan bentuk yang mewakili bentuk dasar objek itu sendiri jika dilihat dari skala tertentu dan merupakan bagian terkecil dari struktur suatu objek secara keseluruhan. Keberadaan geometri fraktal menunjukkan bahwa matematika bukanlah ilmu yang datar, tetapi merupakan ilmu yang indah yang dapat menghasilkan karya-karya yang memiliki nilai seni tinggi. Ada banyak sekali objek fraktal yang sering dijumpai di alam atau dalam kehidupan manusia, seperti misalnya pohon. Pohon dapat dibangun secara berulang dari segitiga siku-siku dengan persegi yang dipasang pada masing-masing sisi, yang disebut sebagai pohon Pythagoras, dimana pohon Pythagoras terinspirasi dari teorema Pythagoras. Berbagai bentuk pohon Pythagoras dapat diperoleh dengan memvariasikan sudutnya, yaitu melalui operasi dilatasi dan rotasi dalam IFS, sehingga diperoleh pohon Pythagoras dengan sudut tetap, sudut beda per iterasi, dan sudut random per iterasi.
Kajian Morfisme Untuk Variasi Kurva Dense Fibonacci Word Anggi Enggar Sari; Kosala Dwidja Purnomo; Firdaus Ubaidillah
Jurnal Matematika Vol 11 No 1 (2021)
Publisher : Mathematics Department, Faculty of Mathematics and Natural Sciences, Udayana University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24843/JMAT.2021.v11.i01.p136

Abstract

The Fibonacci word is one example of a fractal object. The fractal Fibonacci word has the property of being similar to curves with curves. The curve Fibonacci word generated based on the Fibonacci word sequence. The Fibonacci word sequence can be defined by morphism so that a new sequence with the three-digit rule {0,1,2} is called Dense Fibonacci Word. In this research, the variation of the curve Dense Fibonacci Word generated by using the method L-Systems which applies several morphisms. This research method is divided into five stages, the first is the interpretation of the Dense Fibonacci Word and variations of morphism based on the Fibonacci word sequence. Second, the interpretation of fractals Dense Fibonacci Word using the method L-Systems mathematically. Third, the interpretation of fractals Dense Fibonacci Word using the method L-Systems graphically. Fourth, program making and fifth, analysis of results. The results obtained in this study are the visualization of the curve Dense Fibonacci Word with the method L-Systems, the shape of the curve Dense Fibonacci Word varies by applying several morphisms. The variation of the curve Dense Fibonacci Word is compared to each morphism which results in a different shape of the curve Dense Fibonacci Word in the small generation, but the larger the generation the fractal pattern is the same.
OPTIMASI PROSES PENGERINGAN KOPI DI PABRIK KOPI PTPN XII GUMITIR DENGAN MENGGUNAKAN MASON DRYER Rusli Hidayat; Firdaus Ubaidillah; Hadi Siswanto
Jurnal Ilmiah Matematika dan Pendidikan Matematika Vol 10 No 2 (2018): Jurnal Ilmiah Matematika dan Pendidikan Matematika
Publisher : Jurusan Matematika FMIPA Universitas Jenderal Soedirman

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20884/1.jmp.2018.10.2.2841

Abstract

Coffee Processing Plant of the PTPN XII Gumitir is a coffee drying factory that was built in 1910 using a giant barch dryer called Mason Dryer as many as four units, each of which has a capacity of 20 tons, so factory is capable of processing 80 tons for a single simultaneous process. The ambient temperature used is 120oC with a residency time of 18 hours and desirable level of reduction in water content of 9%. To optimize the process, a mathematical model of the process is needed to predict energy use, heat distribution (heat profile in coffe beans) and residency time (heat penetration time required by coffee beans). Existing process models are still limited to models for drying the coffe beans. To optimize the process, a heat transfer temperature from ambient temperature (heating temperature) is neededto enter the Mason Dryer which function as the ambient temperature of the coffee beans at each location/ position of the coffee beans in Mason Dryer. With the discoveryof the model for ambient temperaturewill complement the existing model.
FUNGSI SIMETRI TERHADAP TITIK (a; b ) DAN BEBERAPA SIFATNYA Firdaus Ubaidillah
Pattimura Proceeding 2021: Prosiding KNM XX
Publisher : Pattimura University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1641.775 KB) | DOI: 10.30598/PattimuraSci.2021.KNMXX.77-82

Abstract

Fungsi f : R -> R dikatakan fungsi ganjil jika f(x) = f(x) untuk setiap x atau jika grafik fungsi f simetri terhadap titik asal, yakni titik (0,0). Tujuan dalam tulisan ini adalah memperkenalkan fungsi yang lebih umum dari fungsi ganjil, yang selanjutnya dinamakan fungsi simetri terhadap titik (a,b). Selain itu, tulisan ini akan membahas beberapa sifat dari fungsi simetri terhadap titik (a; b) yang diturunkan dari sifat-sifat fungsi ganjil yang telah dikenal selama ini. Beberapa hasil yang diperoleh diantaranya kombinasi linear dua fungsi simetri terhadap titik (a,b) merupakan fungsi simetri terhadap titik (a,2b), integral fungsi simetri ter-hadap titik (a; b) pada selang tertutup [a-c,a + c] bernilai 2bc untuk setiap bilangan real c, dan lain-lain.
Konstruksi Rak Penataan Gelas Air Minum Menggunakan Hasil Deformasi Benda-Benda Geometri dan Kurva Bezier Hikmah Ardiantika Sari; Bagus Juliyanto; Firdaus Ubaidillah
CGANT JOURNAL OF MATHEMATICS AND APPLICATIONS Vol 2, No 1 (2021): CGANT JOURNAL OF MATHEMATICS AND APPLICATIONS
Publisher : jcgant

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (607.342 KB) | DOI: 10.25037/cgantjma.v2i1.54

Abstract

Drinking water glass shelves are used as containers that can hold drinking water with a growing model. Drinking water glass shelves is made using thecniques which produced from deformation of geometric objects and Bezier curves. This research aims to made produces procedures for designing buffers, main shelves and more varied reliefs with one axis and three modeling axes. This research method divided into several stages. First, construct some basic objects as constituent components of drinking water glass shelves from deformation of octagonal, tube, beams, and the ball. Second, set some basic objects of the component of drinking water glass shelves two types of modeling axis. Third, arrange program using Maple 13. The results of this research obtained the procedure for designing various forms of constituent components of drinking water glass shelves from the basic object of a octagonal, tube, beams, and the ball. Furthermore, the procedure for assembling the components of drinking water glass from the first procedure result on two types of modeling axis. 
MODELISASI GRINDER KOPI MANUAL DENGAN PENGGABUNGAN KURVA BEZIER, KURVA HERMIT, DAN HASIL DEFORMASI TABUNG Mohamad Febri Setiawan; Bagus Juliyanto; Firdaus Ubaidillah
UNEJ e-Proceeding 2022: E-Prosiding Seminar Nasional Matematika, Geometri, Statistika, dan Komputasi (SeNa-MaGeStiK)
Publisher : UPT Penerbitan Universitas Jember

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

A coffee grinder is a tool for grinding coffee beans into coffee grounds. A manual coffee grinder consists of three parts, namely the container, the body, and the swivel. In this study, a manual coffee grinder was modeled by combining Bezier curves, Hermit curves and tube deformation results. Manual coffee grinder modeling processes are divided into four stages. The first, modeling the manual coffee grinder by dividing into two models, namely model A and model B. The second, determining the size of the manual coffee grinder components based on the model. The third, modeling manual coffee grinder components. Finally, combine the ingredients to produce a complete and varied manual coffee grinder. The result of this study is a manual coffee grinder component procedure that varies with the deformation technique. The deformation techniques used are dilation and translation. Keywords: Bezier curve, Hermit curve, dilation, translation.
MODIFIKASI FLOWER POLLINATION ALGORITHM DENGAN REPLACEMENT BERBASIS ILS: PERMASALAHAN QUADRATIC BOUNDED KNAPSACK Yona Eka Pratiwi; Mohamat Fatekurohman; Firdaus Ubaidillah
UNEJ e-Proceeding 2022: E-Prosiding Seminar Nasional Matematika, Geometri, Statistika, dan Komputasi (SeNa-MaGeStiK)
Publisher : UPT Penerbitan Universitas Jember

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Optimization problems are the most interesting problems to discuss in mathematics. Optimization is used to modeling problems in various field to achieve the effectiveness and efficiency of the desired target. One of the optimization problems that are often encountered in everyday life is the selection and packaging of items with limited media or knapsack to get maximum profit. This problem is well-known as knapsack problem. There are various types of knapsack problems, one of them is quadratic bounded knapsack problem. In this paper, the authors proposed a new modified algorithm, which is Flower Pollination Algorithm (FPA) added with Iterated Local Search (ILS)-based Replacement mechanism. Furthermore, the implementation of the proposed algorithm, MFPA, is compared to the original FPA. Based on the results of this study, the proposed MFPA performs better and produces the best solution than the original algorithm on all data used. The advantage obtained by the MFPA algorithm is better and in accordance with the knapsack capacity. In addition, although the computational of the MFPA takes longer time than FPA with the same number of iterations, MFPA is able to find better solutions faster and able to escape from the local optimum. Keywords: Flower Pollination Algorithm, Iterated Local Search, Knapsack, Optimization, Quadratic Bounded Knapsack.
MODELISASI CAKE STAND DENGAN PENGGABUNGAN HASIL DEFORMASI TABUNG, PRISMA, DAN KURVA BEZIER Nur Kholifah Ramadhani; Bagus Juliyanto; Firdaus Ubaidillah
UNEJ e-Proceeding 2022: E-Prosiding Seminar Nasional Matematika, Geometri, Statistika, dan Komputasi (SeNa-MaGeStiK)
Publisher : UPT Penerbitan Universitas Jember

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

A cake stand is a place for serving cakes to beautify the cake display. The cake stand consists of three parts: the base, the support, and the plate. This study developed a multilevel cake stand model by combining several geometric objects using the deformation method. Modeling the cake stands is divided into two stages. The first is to model the components of a cake stand by combining several geometric objects and Bezier curves. The geometric items used are tubes, rectangular prisms, and hexagonal prisms. Bezier curves used are curves of degrees two, three, four, and five. Second, combining the modeling results of each component of the cake stand on two types of cake stand modeling axes, namely one axis and three axes. This study produces 10,584 cake stand models on one modeling axis and three modeling axes. The cake stand model acquired can be visualized utilize Maple 18 software support on a computer. Keywords: Cake stand, Deformation method, Bezier curves, Modeling
GENERALISASI FUNGSI GENAP PADA SISTEM KOORDINAT KUTUB DAN BEBERAPA SIFATNYA Firdaus Ubaidillah
UNEJ e-Proceeding 2022: E-Prosiding Seminar Nasional Matematika, Geometri, Statistika, dan Komputasi (SeNa-MaGeStiK)
Publisher : UPT Penerbitan Universitas Jember

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

The function r is said to be an even function if for every in R. In the polar coordinate system, the graph of the even function is symmetric about the polar axis, i.e., the line , but not vice versa. In this paper, we will introduce a more general definition of an even function, or generalized even functions, in a polar coordinate system, which is given the function and for a in R then for every in R. In addition, some properties of the generalized even functions to the polar coordinate system will be discussed. Keywords: even function, symmetric graph, polar coordinate system