Mohamed Hadi Habaebi
International Islamic University Malaysia

Published : 41 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Designing large-scale antenna array using sub-array Naimul Mukit; Md. Rafiqul Islam; Mohamed Hadi Habaebi; A. H. M. Zahirul Alam; Khaizuran Abdullah; Norun Farihah Abdul Malek; Rauful Nibir; Noor Hidayah M. Adnan; Eid Osman
Bulletin of Electrical Engineering and Informatics Vol 8, No 3: September 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (920.374 KB) | DOI: 10.11591/eei.v8i3.1529

Abstract

Antenna array of large scale have been examined for different applications including 5G technology. To get better data rate or a reliable link substantial number of antenna arrays have been utilized to provide high multiplexing gains as well as array gains with high directivity. In this paper a simple but efficient implementation technique of using sub-arrays for the improvement of large-sized uniform arrays. By repeating a small sub-array multiple times large arrays can be designed. This implication of utilizing small array simplifies the design of a larger array which allows the designer to concentrate on the smaller sub-array before assembling larger arrays. So, by investigating the sub arrays the performance and radiation characteristics of large arrays can be anticipated. The array-factor for a planar sub-array of 2x2 (4 elements) is analyzed using Mat-lab software and then a large array is formed by placing the 2x2 sub-array indifferent configurations in a rectangular arrangements up to 8x8 planar array. And then the results are validated with CST (Computer simulation technology) simulation results.In this way the array-factors, directivities, HPBWs, and side lobes of the constructed large arrays are analyzed and associated with the small sub-array.
A Packet Scheduling Scheme for Improving Real-time Applications Performance in Downlink LTE–advanced Elsheikh Mohamed Ahmed Elsheikh; Mohamed Hadi Habaebi; Huda Adibah Mohd Ramli; Mohammed H. A. Arafa; Kazi Istiaque Ahmed
Indonesian Journal of Electrical Engineering and Informatics (IJEEI) Vol 6, No 2: June 2018
Publisher : IAES Indonesian Section

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52549/ijeei.v6i2.451

Abstract

Quality of Service based packet scheduling is a key-feature of LTE-A mandating selection and transmission of individual user packets based on their priority. HARQ Aware Scheduling, Retransmission Aware Proportional Fair, Chase Combining Based Max C/I Scheduling and Maximum- Largest Weighted First (M-LWDF) are popular Packet Scheduling Algorithms (PSAs) developed to meet QoS requirements. In highly erroneous LTE-A cannel, M-LWDF is considered to be one of best PSA. To validate the performance of M-LWDF for the LTE-A channel, Mean User Throughout, and Fairness performance measures were evaluated for 3 different PSAs designed based on M-LWDF algorithm in this paper. A C++ based simulation results indicate the superiority of the PSA3 algorithm within the threshold of the performance measures against benchmarks. It has shown more efficiency and the performance of RTA traffic was enhanced. Results show that PSA3 is superior to its benchmark PSA2 by 12% in Mean User Throughput and 11% in Fairness. PSA2 performed the worst because it prioritizes new users and it allocated all available RBs to the scheduled user leaving the rest to wait in the buffer. PSA3 maintians good Mean User Throughput and fairnessdue to scheduling each user on its RB which leads to multi-user diversity.
Design, simulation and practical experimentation of miniaturized turbine flow sensor for flow meter assessment Salami Ifedapo Abdullahi; Mohamed Hadi Habaebi; Noreha Abd Malik
Bulletin of Electrical Engineering and Informatics Vol 8, No 3: September 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1001.296 KB) | DOI: 10.11591/eei.v8i3.1501

Abstract

Flow sensors are very essential in many aspects of our daily lives. Many of the industrial processes need a very consistent flow sensor to monitor and check for irregularities in their system. Therefore, flow sensor is an important tool for advanced operation in industrial environment. In this paper, the design and development of a 3D fabricated flow sensor was carried out using SolidWork 3D CAD. SolidWork Flow Simulation was used to model the effect the turbine flow sensor would have on a constant flowing water while MATLAB Simulink flow graph was created to visualize the effect of turbine flow sensor response with voltage input. Afterwards, the design was 3D printed using UP Plus 2 3D printer. The experimentation involved selection of sensors, coding to control the turbine flow sensor and automatic data logging and storage. During the design phase, the sensors and actuators were assembled using locally sourced material. Subsequently, under controlled laboratory environment, the turbine flow sensor was tested using a DC motor which was programmed to control the revolution per minute(rpm) of the turbine flow sensor. The rpm and velocity of the turbine flow meter was measured and stored in a database via Microsoft Excel using Cool Term Software. A total number of 517 readings were analysed to evaluate the performance of the turbine flow sensor. The result shows that the turbine flow meter is responsive to the motor input voltage and yielded accurate measurement of rpm and velocity of turbine flow meter.
Dermatological diagnosis by mobile application Shihab A. Hameed; Alaa Haddad; Mohamed Hadi habaebi; Ali Nirabi
Bulletin of Electrical Engineering and Informatics Vol 8, No 3: September 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (649.478 KB) | DOI: 10.11591/eei.v8i3.1502

Abstract

Health care mobile application delivers the right information at the right time and place to benefit patient’s clinicians and managers to make correct and accurate decisions in health care fields, safer care and less waste, errors, delays and duplicated errors.Lots of people have knowledge a skin illness at some point of their life, For the reason that skin is the body's major organ and it is quite exposed, significantly increasing its hazard of starting to be diseased or ruined.This paper aims to detect skin disease by mobile app using android platform providing valid trustworthy and useful dermatological information on over 4 skin diseases such as acne, psoriasis content for each skin condition, skin rush and Melanoma. It will include name, image, description, symptoms, treatment and prevention with support multi languages English and Bahasa and Mandarin. the application  has the ability to take and send video as well as normal and magnified photos to your dermatologist as an email attachment with comments on safe secure network, this app also has a built in protected privacy features to access to your photo and video dermatologists. The mobile application help in diagnose and treat their patients without an office visit teledermatology is recognized by all major insurance companies doctor. 
Pre-trained based CNN model to identify finger vein Subha Fairuz; Mohamed Hadi Habaebi; Elsheikh Mohamed Ahmed Elsheikh
Bulletin of Electrical Engineering and Informatics Vol 8, No 3: September 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (659.939 KB) | DOI: 10.11591/eei.v8i3.1505

Abstract

In current biometric security systems using images for security authentication, finger vein-based systems are getting special attention in particular attributable to the facts such as insurance of data confidentiality and higher accuracy. Previous studies were mostly based on finger-print, palm vein etc. however, due to being more secure than fingerprint system and due to the fact that each person's finger vein is different from others finger vein are impossible to use to do forgery as veins reside under the skin. The system that we worked on functions by recognizing vein patterns from images of fingers which are captured using near Infrared(NIR) technology. Due to the lack of an available database, we created and used our own dataset which was pre-trained using transfer learning of AlexNet model and verification is done by applying correct as well as incorrect test images. The result of deep convolutional neural network (CNN) based several experimental results are shown with training accuracy, training loss, Receiver Operating Characteristic (ROC) Curve and Area Under the Curve (AUC).
Designing large-scale antenna array using sub-array Naimul Mukit; Md. Rafiqul Islam; Mohamed Hadi Habaebi; A. H. M. Zahirul Alam; Khaizuran Abdullah; Norun Farihah Abdul Malek; Rauful Nibir; Noor Hidayah M. Adnan; Eid Osman
Bulletin of Electrical Engineering and Informatics Vol 8, No 3: September 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (920.374 KB) | DOI: 10.11591/eei.v8i3.1529

Abstract

Antenna array of large scale have been examined for different applications including 5G technology. To get better data rate or a reliable link substantial number of antenna arrays have been utilized to provide high multiplexing gains as well as array gains with high directivity. In this paper a simple but efficient implementation technique of using sub-arrays for the improvement of large-sized uniform arrays. By repeating a small sub-array multiple times large arrays can be designed. This implication of utilizing small array simplifies the design of a larger array which allows the designer to concentrate on the smaller sub-array before assembling larger arrays. So, by investigating the sub arrays the performance and radiation characteristics of large arrays can be anticipated. The array-factor for a planar sub-array of 2x2 (4 elements) is analyzed using Mat-lab software and then a large array is formed by placing the 2x2 sub-array indifferent configurations in a rectangular arrangements up to 8x8 planar array. And then the results are validated with CST (Computer simulation technology) simulation results.In this way the array-factors, directivities, HPBWs, and side lobes of the constructed large arrays are analyzed and associated with the small sub-array.
On the analysis of received signal strength indicator from ESP8266 Rafhanah Shazwani Rosli; Mohamed Hadi Habaebi; Md Rafiqul Islam
Bulletin of Electrical Engineering and Informatics Vol 8, No 3: September 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (652.196 KB) | DOI: 10.11591/eei.v8i3.1511

Abstract

Recently, the concept o Internet of Things has gained a tremendous momentum in the technological world. Internet of Things efficienty connects devices hence improving their quality of life from various aspects. One of the most heavily used device for Internet of Things application is ESP8266 WiFi serial transceiver module. It features access to the Received Signal Strength Indicator readings from the module. In this paper, a characteristic analysis of the Received Signal Strength Indicator readings collected using ESP8266 WiFi serial transceiver module is carried out. The aim is to explore the future possibilities of Received Signal Strength Indicator value as a stand-alone and unique parameter to be used in various applications especially in the domain of Internet of Things. In addition, the potential of the cheap yet sophisticated ESP8266 WiFi serial transceiver module is also highlighted. The findings have shown an insight into the characteristics of Received Signal Strength Indicator readings and how it can be utilized for other different purposes. The findings have brought up a few stimulating issues that may arise from some implementation of Received Signal Strength Indicator readings such as the significant effect of obstruction in the Line of Sight. However, its solution will thrust the Internet of Things’ technological advancementsahead.
Long range channel characteristics through foliage Nurul Afifah Binti Masadan; Mohamed Hadi Habaebi; Siti Hajar Yusoff
Bulletin of Electrical Engineering and Informatics Vol 8, No 3: September 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (861.181 KB) | DOI: 10.11591/eei.v8i2.1489

Abstract

Long Range Low Power Wide Area Network (LoRa LPWAN) technology is unique and remarkable technology because of its long-range coverage, low power consumption and low cost system architecture. These features have allowed Lora LPWAN to become a favorable option for performing communication in most of IoT wireless applications. In this paper, the foliage effect has been studied in terms of attenuation and its overall contribution to the path-loss and link budget calculations. Specifically, 5 tree types were studied and their contribution to the path loss were quantified for different path crossings (e.g., trunk, tree-top and branches). The trees are Licuala Grandis, Mimusops Elengi, Mangifera Indica, Cyrtostachys Renda and Livistona Chinensis. Mimusops Elengi tree gave the strongest mean foliage attenuation accumulating up to 20 dB, due to its big size and crown density. Trunks contribute even higher attenuation in comparison to tree-tops and branches. The Okumura/Hata, Log-normal shadowing and foliage models are used as references for this propagation models development in this paper. Our study showed that Okumura fails to capture the effect of foliage in an environment rich in trees and biodiversity. This demonstrates the need for considering the tropical environment where the characterization of foliage attenuation plays an important role in determining the propagation model path-loss and link budget needed for network design and planning.
Design and Implementation of Visible Light Communication based toys Ain Najihah; Mohamed Hadi Habaebi; Farah Abdul Rahman
Bulletin of Electrical Engineering and Informatics Vol 8, No 3: September 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (650.683 KB) | DOI: 10.11591/eei.v8i3.1506

Abstract

This paper presents the design and implementation steps of a smart visible light communication based toy system equipped with laser sensors that can send and receive the data message based on the conversion of data from ASCII to binary code. The toy system intends to offer two-ways communication that will be a new medium for educational purposes for kids in their developmental stages in which both players can send and receive the data to and from each other toys equipped with sound indicator module to alert the player. Lastly, functionality and system testing were conducted to verify the functionalities of the system. A thorough implementation methodology details are presented in the paper.
Analysis of different digital filters for received signal strength indicator Rafhanah Shazwani Rosli; Mohamed Hadi Habaebi; Md. Rafiqul Islam
Bulletin of Electrical Engineering and Informatics Vol 8, No 3: September 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (756.867 KB) | DOI: 10.11591/eei.v8i3.1508

Abstract

Due to high demand in Internet of Things applications, researchers are exploring deeper alternative methods to provide efficiency in terms of application, energy, and cost among other factors. A frequently used technique is the Received Signal Strength Indicator value for different Internet of Things applications. It is imperative to investigate the digital signal filter for the Received Signal Strength Indicator readings to interpret it into more reliable data. A contrasting analysis of three different types of digital filters is presented in this paper, namely: Simple Moving Average filter, Alpha Trimmed Mean filter and Kalman filter. There are three criteria used to observe the performance of these digital filters which are noise reduction, data proximity and delays. Based on the criteria, the choice of digital signal processing filter can be determined in accordance with its implementations in [ractice. For example, Alpha-Trimmed Meanfilter is shown to be more efficient if used in the pre-processing of Received Signal Strength Indicator readings for physical intrusion detection due to its high data proximity. Hence, this paper illustrates the possibilities of the use of Received Signal Strength Indicator in different Internet of Things applications given a proper choice of digital signal processing filter.