Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : Indonesian Journal of Business Intelligence (IJUBI)

IMPLEMENTASI ALGORITMA J48 DENGAN TEKNIK BAGGING UNTUK PREDIKSI KIPI PESERTA VAKSINASI COVID-19 Eka Rahmawati; Candra Agustina
Indonesian Journal of Business Intelligence (IJUBI) Vol 5, No 1 (2022): Indonesian Journal of Business Intelligence (IJUBI)
Publisher : Program Studi S1 Sistem Informasi Fakultas Komputer dan Teknik Universitas Alma Ata

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21927/ijubi.v5i1.2072

Abstract

The Covid 19 vaccination is considered to be the most effective way to prevent the spread of the Corona Virus, in addition to a clean lifestyle such as washing hands, wearing masks, and keeping a distance from other people. Several large vaccine manufacturing companies in the world have issued a product in the form of a Covid-19 vaccine with various levels of effectiveness. The vaccine is still being distributed throughout the world, including Indonesia. The vaccine obtained an emergency distribution permit from the authorized institution and was administered to community groups that meet the requirements. However, during the implementation of the vaccine, many AEFIs (Post Immunization Adverse Events) were found, such as dizziness, fever, headaches, and some even fainted. Although not dangerous but quite disturbing for people with solid activities. Therefore, it is necessary to predict whether participants will get AEFI or not. The data consists of 8 Attributes, after being processed using the J48 Algorithm, the results show that the attributes that have a strong influence are 7 Attributes, while the rest have no major effect. The accuracy level of the prediction model obtained is 91,22% with this level of accuracy, it means that the model can be utilized by the parties concerned to then be able to anticipate.
IMPLEMENTASI SMOTE DAN ALGORITMA MACHINE LEARNING UNTUK MENINGKATKAN AKURASI REKOMENDASI HOTEL Agustina, Candra; Rahmawati, Eka; Irawan, Denny; Tristanti, Vriska wahyu
Indonesian Journal of Business Intelligence (IJUBI) Vol 7, No 2 (2024): Indonesian Journal of Business Intelligence (IJUBI)
Publisher : Universitas Alma Ata

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21927/ijubi.v7i2.5141

Abstract

Pariwisata memiliki peran penting dalam perekonomian global, dengan destinasi seperti Candi Borobudur menarik berbagai jenis pengunjung. Untuk meningkatkan pengalaman wisatawan, rekomendasi hotel yang akurat menjadi sangat penting. Namun, data yang tidak seimbang, seperti ulasan positif yang terlalu dominan, sering kali mengurangi kinerja model machine learning yang digunakan untuk rekomendasi. Penelitian ini bertujuan untuk mengatasi masalah tersebut dengan menerapkan Synthetic Minority Over-sampling Technique (SMOTE) guna menyeimbangkan dataset dan meningkatkan akurasi rekomendasi hotel. Beragam algoritma machine learning, termasuk Random Forest, Support Vector Machines, dan Neural Networks, diterapkan dan dievaluasi. Hasil penelitian menunjukkan bahwa penerapan SMOTE secara signifikan meningkatkan kinerja semua model, dengan Random Forest memberikan hasil terbaik. Studi ini menunjukkan bahwa SMOTE, dalam kombinasi dengan teknik machine learning, memberikan solusi yang kuat terhadap ketidakseimbangan kelas pada sistem rekomendasi hotel, sehingga menghasilkan rekomendasi yang lebih andal dan relevan bagi wisatawan. Temuan ini memiliki implikasi penting bagi manajemen hotel dan sektor pariwisata secara keseluruhan.